首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sinter forging behavior of α-Al2O3 seeded and unseeded nanocrystalline θ-Al2O3 was investigated as a function of temperature, stress, and strain rate. Seeded samples exhibited the highest degree of plastic deformation during the θ- to α-AI2O3 phase transformation. As a result, microstructure control, increased densification, and a higher degree of transformation were obtained. A uniform microstructure of 150 nm α-Al2O3 grains developed, reaching 57% relative density after sintering 1.5 wt%α-Al2O3 seeded samples for 30 min at 1060°C. When sinter forged at 0.25 mm/min to 63 MPa and 1060°C for 30 min large deformations during the phase transformation increased the relative density to 74%. When the stress was increased to 235 MPa (1060°C, 30 min), 99.7% dense α-Al2O3 with a grain size of 230 nm was obtained. By increasing the sinter forging temperature to 1150°C, 99.5% relative density was achieved at 190 MPa for 30 min.  相似文献   

2.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

3.
The microstructure, crystal phase, electrical conductivity, and mechanical strength of less than 7-mol%-Sc2O3-doped zirconia ceramics fabricated by comparatively low-temperature sintering at 1200–1300°C for 1 h were investigated. Zirconia ceramics having a uniform microstructure (grain size < 0.5 μm) stabilized with 6 mol% Sc2O3 showed high electrical conductivity (0.15 S/cm at 1000°C) and high fracture strength (660 MPa). With the increase of Sc2O3 content from 3.5 to 7 mol%, the grain size, fracture strength, and electrical conductivity at 1000°C changed from 0.2 to 0.5 μm, 970 to 440 MPa, and 0.07 to >0.2 S/cm, respectively. Sc2O3-doped zirconia polycrystals with high fracture strength and high electrical conductivity are promising candidates for the electrolyte material of solid oxide fuel cells.  相似文献   

4.
High-purity submicron HfO2−Y2O3 powders were prepared by the simultaneous hydrolytic decomposition of hafnium and yttrium alkoxides. Compositions of 1 to 7 mol% Y2O3 in HfO2 were studied by high-temperature X-ray diffraction, electron microscopy, BET surface area measurements, emission spectrographic analysis, TGA, and DTA. X-ray diffraction and atomic absorption were used to determine the Y2O3 concentration. Hot-pressing or cold-pressing and sintering of the powders resulted in nearly theoretically dense bodies with uniform microstructure containing grains 1 to 5 μm in size. Surface reflection ir spectra were obtained for monoclinic, tetragonal, and cubic specimens. Fully cubic HfO2 with 7 mol% Y2O3 additions was obtained at a relatively low temperature. The hot-pressed specimens, initially slightly oxygen-deficient or gray HfO2- x , were reoxidized at 1000°C with no deleterious effects; thin sections were translucent to incident light.  相似文献   

5.
Addition of α-Fe2O3 seed particles to alkoxide-derived boehmite sols resulted in a 10-fold increase in isothermal rate constants for the transformation of γ- to α-Al2O3. Changes in porosity and surface area with sintering temperature showed no effect of seeding on coarsening of the transition alumina gels, but the 200-fold decrease in surface area associated with transformation to α-Al2O3 occurred ∼ 100°C lower in seeded gels compared with unseeded materials. As a result of high nucleation frequency and reduced microstructure coarsening, fully transformed seeded alumina retained specific surface areas >22 m2/g and exhibited narrow pore size distributions, permitting development of fully dense, submicrometer α-Al2O3 at ∼ 1200°C.  相似文献   

6.
Polycrystalline BaTiO3 prepared from alkoxy-derived high-purity submicron powders was studied. Highly dense bodies with uniform grain size were obtained typically by uniaxial cold-pressing at 3000 psi and isostatic pressing at 30,000 psi followed by sintering at 1300° to 1350°C in air for 0.5 to 1 h. Using the same consolidation parameters and intimate mixing of residual concentrations of highly active fine-particulate rare-earth oxides to act as grain-growth inhibitors, nearly theoretically dense bodies with a uniform microstructure and 1 to 1.5 μm grain size were obtained. Typical microstructures with well-defined 90° and 180° domain patterns characteristic of BaTiO3: were observed. Also, an example of a checkerboard pattern resulting from a 〈111〉 ingrown twin plane in the structure which is independent of the Curie temperature was found. Electrical measurements on the undoped material indicated room-temperature dielectric constant and tan δ values of 5000±500 and 4×10−3, respectively. Very high k values and dissipation factors were observed with the La2O3- and Nd2O3-doped samples.  相似文献   

7.
Al2O3 and SiC composite materials have been produced from mixtures of aluminosilicates (both natural minerals and synthetic) and carbon as precursor materials. These composites are produced by heating a mixture of kaolinite (or synthetic aluminosilicates) and carbon in stoichiometric proportion above 1550°C, so that only Al2O3 and SiC remain as the major phases. A similar process has also been used for synthesizing other composite powders having mixtures of Al2O3, SiC, TiC, and ZrO2 in different proportions (all compounds together or selective mixtures of some of them), as desired. The microstructure of hot-pressed dense compacts, produced from these powders, revealed that the SiC phase is distributed very homogeneously, even occasionally within Al2O3 grains on a nanosize scale. The homogeneous distribution of SiC particles within the system produced high fracture toughness of the hot-pressed material (KIC∼ 7.0 MPa · m1/2) and having Vicker's hardness values greater than 2000 kgf/mm2.  相似文献   

8.
Synthesis of Novel Niobium Aluminide-Based Composites   总被引:5,自引:0,他引:5  
A reactive sintering process has been used to produce almost fully dense composites with interpenetrating networks of NbAl3 and Al2O3. The process involves the reaction synthesis of niobium aluminides and Al2O3 from compacts of intensively milled aluminum and Nb2O5 powder mixtures. During carefully controlled heating under an inert atmosphere, the oxide reduction by aluminum to form niobium aluminides and Al2O3 proceeds at temperatures below the melting point of aluminum. At temperatures of >1000°C, the reaction-formed niobium aluminides and Al2O3 sinter. The present paper discusses processing parameters, such as attrition milling, the heating cycle, and the metal:ceramic ratio in the starting mixture, that control microstructure development and mechanical properties.  相似文献   

9.
Up to 50 vol% of TiB2, TiC0.5N0.5, TiN, or TiC was added to Y2O3-stabilized tetragonal ZrO2 polycrystals (Y-TZP) and hot pressed under vacuum. The influence of the type of secondary phase on the microstructure and mechanical properties was studied, as a function of the hot-pressing temperature. The influence of the secondary-phase content on the mechanical properties was studied by varying the TiB2 content up to 50 vol%. Fully dense Y-TZP-based composites with very high toughness (up to 10 MPa·m1/2), excellent bending strength (up to 1237 MPa), and increased hardness, with respect to ZrO2 (Vickers hardness up to 1450 kg/mm2), were obtained.  相似文献   

10.
The microwave dielectric properties of dense ceramics of a new A4B3O12 type cation-deficient hexagonal perovskite Sr3LaNb3O12 are reported. Single-phase powders can be obtained from the mixed-oxide route at 1320°C and dense ceramics (>96% of the theoretical X-ray density) with uniform microstructures (5–12 um) can be obtained by sintering in air at 1430°C. The ceramic exhibits a moderate dielectric constant ɛr∼36, a high quality factor Q × f ∼45 327 GHz, and a low temperature coefficient of resonant frequency τ f of −9 ppm/°C.  相似文献   

11.
Aqueous processing of Al2O3─ZrO2 (123 mol% CeO2) composites, combined with sintering conditions, was used to control the microstructure and its influence on the martensitic transformation temperature of t -ZrO2 and the transformation-toughening contribution at room temperature. The resultant ZrO2 grain sizes in the dense composites were related to the transformation-toughening behavior of t -ZrO2. The data show that (1) the best processing conditions exist when the electrophoretic mobilities of the two solids are positive, adequately high to ensure colloidal stability, efficient packing,and uniform ZrO2 distribution but differ greatly in magnitude, (2) the colloidal stability of ZrO2 controls the overall stability and the rheological and processing behavior of this mixture, (3) the grain size distribution in dense pieces sintered for 1 h at 1500°C is comparable to the particle size distribution of the powders, (4) the martensite start temperature for the tetragonal to-monoclinic transformation in Al2O3 containing 20 and 40 vol% ZrO2 increases and can approach 0°C with increasing average ZrO2 grain size, and as a result, (5) the fracture toughness values at room temperature are raised from 4–5 MPa.m1/2 to 9–12 MPa.m1/2 for these two compositions.  相似文献   

12.
The effect of Al8B4C7 used as an antioxidant in MgO–C refractories and the behavior of Al8B4C7 in CO gas were investigated in the present study. Al8B4C7 was found to react with CO gas, to form Al2O3( s ), B2O3( l ), and C( s ), at temperatures >1100°C. The Al2O3 reacts with MgO to form MgAl2O4 near the surface of the material. At the same time, B2O3( l ) evaporates and reacts with MgO, to form a liquid phase, at >1333°C, the eutectic point between 3MgO·B2O3 and MgO. The coexistence of the liquid and MgAl2O4 makes the protective layer more dense, thus inhibiting oxidation of the refractory. At >1333°C, the process apparently is controlled by oxygen diffusion, whereas it is controlled by chemical reaction when the temperature is <1333°C.  相似文献   

13.
The 1.5- to 3-mol%-Y2O3-stabilized tetragonal ZrO2 (Y-TZP) and Al2O3/Y-TZP nanocomposite ceramics with 1 to 5 wt% of alumina were produced by a colloidal technique and low-temperature sintering. The influence of the ceramic processing conditions, resulting density, microstructure, and the alumina content on the hardness and toughness were determined. The densification of the zirconia (Y-TZP) ceramic at low temperatures was possible only when a highly uniform packing of the nanoaggregates was achieved in the green compacts. The bulk nanostructured 3-mol%-yttria-stabilized zirconia ceramic with an average grain size of 112 nm was shown to reach a hardness of 12.2 GPa and a fracture toughness of 9.3 MPa·m1/2. The addition of alumina allowed the sintering process to be intensified. A nanograined bulk alumina/zirconia composite ceramic with an average grain size of 94 nm was obtained, and the hardness increased to 16.2 GPa. Nanograined tetragonal zirconia ceramics with a reduced yttria-stabilizer content were shown to reach fracture toughnesses between 12.6–14.8 MPa·m1/2 (2Y-TZP) and 11.9–13.9 MPa·m1/2 (1.5Y-TZP).  相似文献   

14.
Some K2O-Nb2O5-GeO2 glasses are prepared, and their crystallization behaviors are examined. 25K2O·25Nb2O5·50GeO2 glass with the glass transition temperature T g= 622°3C and crystallization onset temperature T x= 668°3C shows a prominent nanocrystallization. The crystalline phase is K3,8Nb5Ge3O20,4 with an orthorhombic structure. The sizes of crystals in the crystallized glasses heat-treated at 630° and 720°3C for 1 h are °10 and 20–30 nm, respectively, and the crystallized glasses obtained by heat treatments at 620°-850°3C for 1 h maintain good transparency. The density of crystallized glasses increases gradually with increasing heat-treatment temperature, and the volume fraction of crystals in the sample heat-treated at 630°3C for 1 h is estimated to be ∼35%. The usual Vickers hardness and Martens hardness (estimated by nanoindentation) of 25K2O·25Nb2O5·50GeO2 glass change steeply by heat treatment at T g, i.e., at around 35% volume fraction of nanocrystals. The present study demonstrates that the composite of nanocrystals and the glassy phase has a strong resistance against deformation during Vickers indenter loading in crystallized glasses.  相似文献   

15.
Cr2O3 and ZrO2 were mixed in various ratios and pressed to form compacts, which were then sintered in carbon powder. Compacts with >30 wt% Cr2O3 were sintered to densities >98% of true density at 1500°C. This method of sintering in carbon powder can be used to prepare very dense Cr2O3-ZrO2 ceramics at a relatively low temperature, (∼1500°C) without additives.  相似文献   

16.
The thermal evolution of a mullite gel of composition 2Al2O3·SiO2 has been investigated. The gel crystallized at 1300°C into an alumina-rich mullite and corundum, instead of single-phase 2Al2O3·SiO2 mullite. The amount of Al2O3 that dissolved in the mullite structure has been determined in the 1300–1780°C temperature range by measuring the mullite lattice parameters. A maximum limit for the amount of Al2O3 in solid solution has been observed. Densification of the gel powders has been analyzed up to temperatures of 1780°C. The microstructure of dense materials always showed the presence of residual Al2O3 particles.  相似文献   

17.
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy-dispersive spectroscopy to be uniform throughout the samples. The in-line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.  相似文献   

18.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

19.
Porous Si3N4 ceramics were synthesized by pressureless sintering of green compacts prepared using slip casting of slurries containing Si3N4, 5 wt% Y2O3+2 wt% Al2O3, and 0–60% organic whiskers composed of phenol–formaldehyde resin with solids loading up to 60 wt%. Rheological properties of slurries were optimized to achieve a high degree of dispersion with a high solid-volume fraction. Samples were heated at 800°C in air and sintered at 1850°C in a N2 atmosphere. Porosities ranging from 0% to 45% were obtained by the whisker contents (corresponding to 0–60 vol% whisker). Samples exhibited a uniform pore distribution. Their rod-shaped pore morphology originated from burnout of whiskers, and an extremely dense Si3N4 matrix.  相似文献   

20.
The microstructure of copper–alumina (Cu-Al2O3) composites that have been prepared via the melt infiltration of liquid copper into porous alumina preforms was studied in detail, using various transmission electron microscopy (TEM) techniques. Two different samples—with open pore diameters of 0.2 and 0.8 μm—were investigated. For both specimens, a single crystalline copper network that extended throughout the open porosity of the alumina preform was observed. An amorphous glass phase that contained silicon and calcium was observed at the Al2O3/Cu/Al2O3 triple junctions. The diameters of these amorphous pockets, which were strongly faceted along the Al2O3 grains, were up to 20 and 100 nm for the initial pore sizes of 0.2 and 0.8 μm, respectively. A glass phase that contained silicon and calcium also was present at the Cu/Al2O3 interfaces, whereas the Al2O3 boundaries remained dry. Detailed high-resolution transmission electron microscopy investigations have shown that the interfacial glass phase at the Cu/Al2O3 interfaces exhibited a uniform equilibrium film thickness along the interface region. However, the interfacial film thickness was dependent on the orientation of the Al2O3 grain, and its value varied from 0.4 nm for Al2O3 rhombohedral-plane termination ((1¯012)) up to 1 nm for Al2O3 basal-plane termination ((0001)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号