首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了一种以对二乙苯为原料,经四苯基氯化钴卟啉催化氧气氧化、硼氢化钠还原、水解合成标题化合物的新方法,并采用熔点测定、红外及核磁共振对目标产物的结构进行了表征,产品分离总收率较高,分别达57.B%和52.3%,纯度均达到了99.5%.该合成方法反应条件相对温和,简便易行.  相似文献   

2.
Due to the ever-increasing antimicrobial resistance there is an urgent need to continuously design and develop novel antimicrobial agents. Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. The synthesized compounds were obtained in good yield ranging from 75 to 80 %. The chemical structures of these novel hybrid molecules were determined by spectroscopic methods and the antimicrobial activity of the compounds was investigated against both bacterial and fungal strains. The tested compounds showed significant antimicrobial activity and weak to moderate antifungal activity. Despite the evident similarity of the quinolone moiety of our compounds with fluoroquinolones, our compounds do not function by inhibiting DNA gyrase. Computational characterization of the compounds shows that they have attractive physicochemical and pharmacokinetic properties and could serve as templates for developing potential antimicrobial agents for clinical use.  相似文献   

3.
Short-chain fatty acids (SCFAs) have a range of effects in metabolism and immune regulation. We have observed that delivery of SCFAs to lysosomes has potent immune regulatory effects, possibly as a surrogate signal for the presence of anaerobic organisms. To better understand the pharmacology of lysosomal SCFA donors, we investigated the distribution and metabolism of propionate and butyrate donors. Each analog ( 1 a and 2 a ) can donate three SCFA equivalents via ester hydrolysis through six intermediate metabolites. The compounds are stabilized by low pH, and stability in cells is usually higher than in medium, but is cell-type specific. Butyrate derivatives were found to be more stable than propionates. Tri-esters were more stable than di- or mono-esters. The donors were surprisingly stable in vivo, and hydrolysis of each position was organ specific. Jejunum and liver caused rapid loss of 4’’ esters. The gut metabolite pattern by i. v. differed from that of p.o. application, suggesting luminal and apical enzyme effects in the gut epithelium. Central organs could de-esterify the 11-position. Levels in lung relative to other organs were higher by p.o. than via i. v., suggesting that delivery route can influence the observed pharmacology and that gut metabolites distribute differently. The donors were largely eliminated by 24 h, following near linear decline in organs. The observed levels and distribution were found to be consistent with pharmacodynamic effects, particularly in the gut.  相似文献   

4.
The orexin system plays an important role in the regulation of wakefulness. Suvorexant, a dual orexin receptor antagonist (DORA) is approved for the treatment of primary insomnia. Herein, we outline our optimization efforts toward a novel DORA. We started our investigation with rac-[3-(5-chloro-benzooxazol-2-ylamino)piperidin-1-yl]-(5-methyl-2-[1,2,3]triazol-2-ylphenyl)methanone ( 3 ), a structural hybrid of suvorexant and a piperidine-containing DORA. During the optimization, we resolved liabilities such as chemical instability, CYP3A4 inhibition, and low brain penetration potential. Furthermore, structural modification of the piperidine scaffold was essential to improve potency at the orexin 2 receptor. This work led to the identification of (5-methoxy-4-methyl-2-[1,2,3]triazol-2-ylphenyl)-{(S)-2-[5-(2-trifluoromethoxyphenyl)-[1,2,4]oxadiazol-3-yl]pyrrolidin-1-yl}methanone ( 51 ), a potent, brain-penetrating DORA with in vivo efficacy similar to that of suvorexant in rats.  相似文献   

5.
Enzyme inhibitors play a crucial role in diagnosis of a wide spectrum of diseases related to bacterial infections. We report here the effect of a water-soluble self-assembled PdII8 molecular cage towards β-galactosidase enzyme activity. The molecular cage is composed of a tetrapyridyl donor ( L ) and cis-[(en)Pd(NO3)2] (en=ethane-1,2-diamine) acceptor and it has a hydrophobic internal cavity. We have observed that the acceptor moiety mainly possesses the ability to inactivate the β-galactosidase enzyme activity. Kinetic investigation revealed the mixed mode of inhibition. This inhibition strategy was extended to control the growth of methicillin-resistant Staphylococcus aureus. The internalization of the Pd(II) cage inside the bacteria was confirmed when bacterial solutions were incubated with curcumin loaded cage. The intrinsic green fluorescence of curcumin made the bacteria glow when put under an optical microscope. Furthermore, this curcumin loaded molecular cage shows an enhanced antibacterial activity. Thus, PdII8 molecular cage is quite attractive due to its dual role as enzyme inhibitor and drug carrier.  相似文献   

6.
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).  相似文献   

7.
The title compounds were prepared by reaction of 1,1′-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)diethanone (1) with different aromatic aldehydes 2a–c, namely Furfural (2a), 4-chlorobenzaldehyde (2b) and 4-methoxybenzaldhyde (2c) to yield the corresponding α,β-unsaturated ketones 3a–c. Compound 3 was reacted with malononitrile, 2-cyanoacetamide or 2-cyanothioacetamide yielded the corresponding bis[2-amino-6-(aryl)nicotinonitrile] 4a–c, bis[6-(2-aryl)-2-oxo-1,2-dihydropyridine-3-carbonitrile] 5a–c or bis[6-(2-aryl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile] 6a,b, respectively. The reaction of compound 6a with each of 2-chloro-N-(4-bromophenyl) acetamide (7a), chloroacetamide (7b) in ethanolic sodium ethoxide solution at room temperature to give the corresponding 4,4′-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)bis-6-(2-furyl)thieno[2,3-b]pyridine-2-carboxamide] derivatives 9a,b. While compound 6a reacted with hydrazine hydrate yielded the 4,4′-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)bis[6-(2-furyl)-1H-pyrazolo[3,4-b]pyridin-3-amine] 11. The structures of the products were elucidated based on their spectral properties, elemental analyses and, wherever possible, by alternate synthesis. Antimicrobial evaluation of the products was carried out.  相似文献   

8.
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a , identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.  相似文献   

9.
Betulinic acid (BA), a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229). Based on IC50 values under normoxic conditions, we detected a 1.3–2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p = 0.029) and 1.55 (p = 0.002), respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions.  相似文献   

10.
Ni-promoted tetramethylammonium tetrathiomolybdate precursor was prepared by the aqueous solution precipitation method using (NH4)2MoS4, (CH3)4NBr and NiCl2.6H2O as raw materials. Carbon-containing Ni–Mo sulfide nanospheres, namely Ni/C1–MoS2, were obtained by ex situ thermal decomposition of the precursor under N2 atmosphere. Energy dispersive X-ray spectroscopy (EDS), low temperature N2 adsorption (BET method), X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques were employed to characterize these as–synthesized sulfide particles. The results showed that the average size of solid Ni–Mo sulfide nanospheres, with surface composition MoNi0.40S0.73C1.43, is 75 nm and the solid structure leads to low surface area of Ni/C1–MoS2. In addition, the introduction of methyl chain improved the dispersion of nickel phases and resulted in C/Mo ratio, 1.4. By comparison with catalytic performance of the Ni/MoS2 catalyst counterpart, Ni/C1–MoS2 revealed lower HDS activity but higher direct desulfurization (DDS) selectivity. Lower stacking number of MoS2 slabs (5 layers) and shorter slabs length of MoS2 slabs (6 nm) explained higher DDS selectivity satisfactorily. The formation of carbon-containing Ni–Mo sulfide nanospheres was possibly due to surfactant effect of tetramethylammonium cations and the potential measure to increase their surface area was discussed as well in this work.  相似文献   

11.
In this work, a library of (+)-camphor and (−)-fenchone based N-acylhydrazones, amides, and esters, including para-substituted aromatic/hetaromatic/cyclohexane ring was synthesized, with potent orthopoxvirus inhibitors identified among them. Investigations of the structure-activity relationship revealed the significance of the substituent at the para-position of the aromatic ring. Also, the nature of the linker between a hydrophobic moiety and aromatic ring was clarified. Derivatives with p-Cl, p-Br, p-CF3, and p-NO2 substituted aromatic ring and derivatives with cyclohexane ring showed the highest antiviral activity against vaccinia virus, cowpox, and ectromelia virus. The hydrazone and the amide group were more favourable as a linker for antiviral activity than the ester group. Compounds 3 b and 7 e with high antiviral activity were examined using the time-of-addition assay and molecular docking study. The results revealed the tested compounds to inhibit the late processes of the orthopoxvirus replication cycle and the p37 viral protein to be a possible biological target.  相似文献   

12.
9,10-Dihydrophenanthrenes and phenanthrenes, mimics of natural compounds with strong antialgal activity, have been synthesized through cross-coupling of 1-(2-iodo-5-methoxy)-phenylethanol with variously substituted iodobenzenes. The synthetic compounds, bearing a hydroxyl or a methoxyl group at C-2 and a methyl in the C ring, were tested against the green alga Selenastrum capricornutum. All compounds, except 2-methoxy-7-methylphenanthrene, caused inhibition of algal growth by more than 70% at 10–4 M, and many of them retained this strong activity at 10–5 M.  相似文献   

13.
We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2–5.4 μM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.  相似文献   

14.
A significant number of studies report growing resistance in nematodes thriving in both humans and livestock. This study was conducted to evaluate the in vitro and in vivo anthelmintic efficiency of Curcubita pepo (C. pepo) L. hot water extract (HWE), cold water extract (CWE) or ethanol extract (ETE) on two model nematodes: Caenorhabditis elegans (C. elegans) and Heligmosoides bakeri (H. bakeri). Methods: Raman, IR and LC-MS spectroscopy analyses were performed on the studied plant material to deliver qualitative and quantitative data on the composition of the obtained extracts: ETE, HWE and CWE. The in vitro activity evaluation showed an impact of C. pepo extracts on C. elegans and different developmental stages of H. bakeri. The following in vivo experiments on mice infected with H. bakeri confirmed inhibitory properties of the most active pumpkin extract selected by the in vitro study. All of the extracts were found to contain cucurbitine, aminoacids, fatty acids, and-for the first time-berberine and palmatine were identified. All C. pepo seed extracts exhibited a nematidicidal potential in vitro, affecting the survival of L1 and L2 H. bakeri larvae. The ETE was the strongest and demonstrated a positive effect on H. bakeri eggs hatching and marked inhibitory properties against worm motility, compared to a PBS control. No significant effects of pumpkin seed extracts on C. elegans integrity or motility were found. The EtOH extract in the in vivo studies showed anthelmintic properties against both H. bakeri fecal egg counts and adult worm burdens. The highest egg counts reduction was observed for the 8 g/kg dose (IC50 against H. bakeri = 2.43; 95% Cl = 2.01–2.94). A decrease in faecal egg counts (FEC) was accompanied by a significant reduction in worm burden of the treated mice compared to the control group. Conclusions: Pumpkin seed extracts may be used to control of Gastrointestinal (G.I.) nematode infections. This relatively inexpensive alternative to the currently available chemotherapeutic should be considered as a novel drug candidate in the nearest future.  相似文献   

15.
Five new derivatives (2–6) were semi-synthesized using compound 1, a dihydro-β-agarofuran sesquiterpene with C-2 ketone obtained from Parnassia wightiana, as the starting material by acylation, oxidation, reduction, esterification, and amination, respectively. Structures of 2–6 were confirmed by 1D- and 2D-NMR and HR-ESI-MS spectra. In addition, antifeedant activities of these compounds (1–6) were tested against the 3rd-instar larvae of Mythimna separata. Antifeedant effects of compounds 2 and 4 were greater than the parent compound 1 whereas other compounds exhibited low to no feeding deterrent effects against third instar M. separata larvae in lab bioassays. Therefore, our results suggest that acylated and reduced derivatives at C-8 and C-2, respectively, of 1 may improve the antifeeding effect. This preliminary information will be useful in designing new insect control agents against M. separata and other important pests.  相似文献   

16.
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry.  相似文献   

17.
(±)-5-Hydroxy-1,7-bis-(4-hydroxyphenyl)-3-heptanone (2a), (±)-5-hydroxyl-1-(4-hydroxyphenyl)-7-phenyl-3-heptanone (2b), (±)-5-hydroxy-7-(4-hydroxyphenyl)-1-phenyl-3-heptanone (2c), and (±)-5-hydroxy-1,7-bis-(phenyl)-3-heptanone (2d) have been synthesized to study the structure–activity relationship regarding digestibility inhibition in vitro in cow rumen fluid. The activities were compared with the activity of chiral (S)-2a and its glucoside platyphylloside (1), isolated from Betula pendula. Compound 2a was slightly less active, 2b and 2c were more active, and 2d was less active than (S)-2a and platyphylloside.  相似文献   

18.
Several CF3Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates ( 5 a / 6 a ), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates ( 5 b / 6 b ), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates ( 5 c / 6 c ), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates ( 11 a / 12 a ), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates ( 11 b / 12 b ), were readily synthesized from natural amino acids and [Me4N][SeCF3]. The primary in vitro cytotoxicity assays revealed that compounds 6 a , 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 μM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.  相似文献   

19.
1,4-Naphthoquinones are exceptional building blocks in organic synthesis and have been used to synthesize several well-known pharmaceutically active agents. Herein we report the synthesis, structural characterization, and biological evaluation of new phenylaminosulfanyl-1,4-naphthoquinone derivatives. We evaluated the cytotoxic activity of the synthesized compounds against three human cancer cell lines: A549, HeLa, and MCF-7. Most of the synthesized compounds displayed potent cytotoxic activity. Specifically, compounds 5 e [3,5-dichloro-N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)benzamide], 5 f [N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)-3,5-dinitrobenzamide], and 5 p [N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)thiophene-2-carboxamide] showed remarkable cytotoxic activity. The synthesized compounds showed low toxicity in normal human kidney HEK293 cells. The cytotoxic mechanism of compounds 5 e , 5 f , and 5 p was explored in MCF-7 cells. The results confirmed that these three compounds induce apoptosis and arrest the cell cycle at the G1 phase. In addition, compounds 5 e , 5 f , and 5 p were found to induce apoptosis via upregulation of caspase-3 and caspase-7 proteins as well as by upregulation of the gene expression levels of caspases-3 and -7. Our findings demonstrate that compounds 5 e , 5 f , and 5 p could be potent agents against a number of cancer types.  相似文献   

20.
The synthesis and pharmacological evaluation of C1-substituted adamantane hydrazones, their C2-substituted isomers, and C1-substituted adamantane furanoic carboxamides is described. These new adamantane derivatives exhibited an interesting pharmacological profile in terms of trypanocidal activity and selectivity. The most active adduct with the best selectivity in this study was found to be the phenylacetoxy hydrazone 1 b (2-[4-(tricyclo[3.3.1.13,7]dec-1-yl)phenyl]-N′-[(5-nitrofuran-2-yl)methylene]acetohydrazide; EC50=11±0.9 nm , SITb=770).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号