首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonalcoholic fatty liver disease (NAFLD) is a continuum of liver abnormalities often starting as simple steatosis and to potentially progress into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Because of its increasing prevalence, NAFLD is becoming a major public health concern, in parallel with a worldwide increase in the recurrence rate of diabetes and metabolic syndrome. It has been estimated that NASH cirrhosis may surpass viral hepatitis C and become the leading indication for liver transplantation in the next decades. The broadening of the knowledge about NASH pathogenesis and progression is of pivotal importance for the discovery of new targeted and more effective therapies; aim of this review is to offer a comprehensive and updated overview on NAFLD and NASH pathogenesis, the most recommended treatments, drugs under development and new drug targets. The most relevant in vitro and in vivo models of NAFLD and NASH will be also reviewed, as well as the main molecular pathways involved in NAFLD and NASH development.  相似文献   

2.
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, paralleling the epidemic of obesity and Type 2 diabetes mellitus (T2DM). NAFLD exhibits a histological spectrum, ranging from “bland steatosis” to the more aggressive necro-inflammatory form, non-alcoholic steatohepatitis (NASH) which may accumulate fibrosis to result in cirrhosis. Emerging data suggests fibrosis, rather than NASH per se, to be the most important histological predictor of liver and non-liver related death. Nevertheless, only a small proportion of individuals develop cirrhosis, however the large proportion of the population affected by NAFLD has led to predictions that NAFLD will become a leading cause of end stage liver disease, hepatocellular carcinoma (HCC), and indication for liver transplantation. HCC may arise in non-cirrhotic liver in the setting of NAFLD and is associated with the presence of the metabolic syndrome (MetS) and male gender. The MetS and its components also play a key role in the histological progression of NAFLD, however other genetic and environmental factors may also influence the natural history. The importance of NAFLD in terms of overall survival extends beyond the liver where cardiovascular disease and malignancy represents additional important causes of death.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease worldwide, with 25% of these patients developing nonalcoholic steatohepatitis (NASH). NASH significantly increases the risk of cirrhosis and decompensated liver failure. Past studies in rodent models have shown that glycine-N-methyltransferase (GNMT) knockout results in rapid steatosis, fibrosis, and hepatocellular carcinoma progression. However, the attenuation of GNMT in subjects with NASH and the molecular basis for its impact on the disease process is still unclear. To address this knowledge gap, we show the reduction of GNMT protein levels in the liver of NASH subjects compared to healthy controls. To gain insight into the impact of decreased GNMT in the disease process, we performed global label-free proteome studies on the livers from a murine modified amylin diet-based model of NASH. Histological and molecular characterization of the animal model demonstrate a high resemblance to human disease. We found that a reduction of GNMT leads to a significant increase in S-adenosylmethionine (AdoMet), an essential metabolite for transmethylation reactions and a substrate for polyamine synthesis. Further targeted proteomic and metabolomic studies demonstrated a decrease in GNMT transmethylation, increased flux through the polyamine pathway, and increased oxidative stress production contributing to NASH pathogenesis.  相似文献   

4.
Nonalcoholic fatty liver disease (NAFLD) encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.  相似文献   

5.
6.
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of diseases ranging from simple fatty liver to nonalcoholic steatohepatitis, (NASH) which may progress to cirrhosis and hepatocellular carcinoma. NASH has been independently correlated with atherosclerosis progression and cardiovascular risk. NASH development is characterized by intricate interactions between resident and recruited cells that enable liver damage progression. The increasing general agreement is that the cross-talk between hepatocytes, hepatic stellate cells (HSCs) and macrophages in NAFLD has a main role in the derangement of lipid homeostasis, insulin resistance, danger recognition, immune tolerance response and fibrogenesis. Moreover, several evidences have suggested that hepatic stem/progenitor cell (HPCs) activation is a component of the adaptive response of the liver to oxidative stress in NAFLD. HPC activation determines the appearance of a ductular reaction. In NASH, ductular reaction is independently correlated with progressive portal fibrosis raising the possibility of a periportal fibrogenetic pathway for fibrogenesis that is parallel to the deposition of subsinusoidal collagen in zone 3 by HSCs. Recent evidences indicated that adipokines, a class of circulating factors, have a key role in the cross-talk among HSCs, HPCs and liver macrophages. This review will be focused on cellular cross-talk and the relative molecular networks which are at the base of NASH progression and fibrosis.  相似文献   

7.
8.
Non-alcoholic fatty liver disease (NAFLD) which includes steatosis and steatohepatitis, in particular non-alcoholic steatohepatitis (NASH), is a rising health problem world-wide and should be separated from alcoholic steatohepatitis (ASH). NAFLD is regarded as hepatic manifestation of the metabolic syndrome (MetSy), being tightly linked to obesity and type 2 diabetes mellitus (T2DM). Development of steatosis, liver fibrosis and cirrhosis often progresses towards hepatocellular carcinogenesis and frequently results in the indication for liver transplantation, underlining the clinical significance of this disease complex. Work on different murine models and several human patients studies led to the identification of different molecular key players as well as epigenetic factors like miRNAs and SNPs, which have a promoting or protecting function in AFLD/ASH or NAFLD/NASH. To which extent they might be translated into human biology and pathogenesis is still questionable and needs further investigation regarding diagnostic parameters, drug development and a better understanding of the genetic impact. In this review we give an overview about the currently available knowledge and recent findings regarding the development and progression of this disease.  相似文献   

9.
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.  相似文献   

10.
Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.  相似文献   

11.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.  相似文献   

12.
Chronic liver disease (CLD) is a global threat to the human population, with manifestations resulting from alcohol-related liver disease (ALD) and non-alcohol fatty liver disease (NAFLD). NAFLD, if not treated, may progress to non-alcoholic steatohepatitis (NASH). Furthermore, inflammation leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Vitexin, a natural flavonoid, has been recently reported for inhibiting NAFLD. It is a lipogenesis inhibitor and activates lipolysis and fatty acid oxidation. In addition, owing to its antioxidant properties, it appeared as a hepatoprotective candidate. However, it exhibits low bioavailability and low efficacy due to its hydrophobic nature. A novel rat model for liver cirrhosis was developed by CCL4/Urethane co-administration. Vitexin encapsulated liposomes were synthesized by the ‘thin-film hydration’ method. Polyethylene glycol (PEG) was coated on liposomes to enhance stability and stealth effect. The diseased rats were then treated with vitexin and PEGylated vitexin liposomes, administered intravenously and orally. Results ascertained the liposomal encapsulation of vitexin and subsequent PEG coating to be a substantial strategy for treating liver cirrhosis through oral drug delivery.  相似文献   

13.
14.
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD), in which most patients exhibit non-progressive, non-alcoholic fatty liver (NAFL) attributable to simple steatosis. Multiple hits, including genetic differences, fat accumulation, insulin resistance and intestinal microbiota changes, account for the progression of NASH. NAFLD is strongly associated with obesity, which induces adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level, which in turn induces hepatic steatosis, inflammation and fibrosis. Among these factors, gut microbiota are acknowledged as having an important role in initiating this multifactorial disease. Oxidative stress is considered to be a key contributor in the progression from NAFL to NASH. Macrophage infiltration is apparent in NAFL and NASH, while T-cell infiltration is apparent in NASH. Although several clinical trials have shown that antioxidative therapy with vitamin E can effectively control hepatitis pathology in the short term, the long-term effects remain obscure and have often proved to be ineffective in many other diseases. Several long-term antioxidant protocols have failed to reduce mortality. New treatment modalities that incorporate current understanding of NAFLD molecular pathogenesis must be considered.  相似文献   

15.
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.  相似文献   

16.
Non-alcoholic fatty liver disease (NAFLD), the most frequent liver disease in the Western world, is a common hepatic manifestation of metabolic syndrome (MetS). A specific cure has not yet been identified, and its treatment is currently based on risk factor therapy. Given that the initial accumulation of triglycerides in the liver parenchyma, in the presence of inflammatory processes, mitochondrial dysfunction, lipotoxicity, glucotoxicity, and oxidative stress, can evolve into non-alcoholic steatohepatitis (NASH). The main goal is to identify the factors contributing to this evolution because, once established, untreated NASH can progress through fibrosis to cirrhosis and, ultimately, be complicated by hepatocellular carcinoma (HCC). Several drugs have been tested in clinical trials for use as specific therapy for NAFLD; most of them are molecules used to cure type 2 diabetes mellitus (T2DM), which is one of the main risk factors for NAFLD. Among the most studied is pioglitazone, either alone or in combination with vitamin E, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors. Actually, the most promising category seems to be sodium-glucose cotransporter (SGLT2) inhibitors. Their action is carried out by inhibiting glucose reabsorption in the proximal renal tubule, leading to its increased excretion in urine and decreased levels in plasma. Experimental studies in animal models have suggested that SGLT2 inhibitors may have beneficial modulatory effects on NAFLD/NASH, and several trials in patients have proven their beneficial effects on liver enzymes, BMI, blood lipids, blood glucose, and insulin resistance in NAFLD patients, thus creating strong expectations for their possible use in preventing the evolution of liver damage in these patients. We will review the main pathogenetic mechanisms, diagnostic modalities, and recent therapies of NAFLD, with particular attention to the use of SGLT2 inhibitors.  相似文献   

17.
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.  相似文献   

18.
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that leads to liver cirrhosis and hepatocellular carcinoma. Endothelial dysfunction caused by hepatic lipotoxicity is an underlying NASH pathology observed in the liver and the cardiovascular system. Here, we evaluated the effect of dietary nitrite on a rat NASH model. Stroke-prone, spontaneously hypertensive 5/Dmcr rats were fed a high-fat/high-cholesterol diet to develop the NASH model, with nitrite or captopril (100 mg/L, each) supplementation in drinking water for 8 weeks. The effects of nitrite and captopril were evaluated using immunohistochemical analyses of the liver and heart tissues. Dietary nitrite suppressed liver fibrosis in the rats by reducing oxidative stress, as measured using the protein levels of nicotinamide adenine dinucleotide phosphate oxidase components and inflammatory cell accumulation in the liver. Nitrite lowered the blood pressure in hypertensive NASH rats and suppressed left ventricular chamber enlargement. Similar therapeutic effects were observed in a captopril-treated rat NASH model, suggesting the possibility of a common signaling pathway through which nitrite and captopril improve NASH pathology. In conclusion, dietary nitrite attenuates the development of NASH with cardiovascular involvement in rats and provides an alternative NASH therapeutic strategy.  相似文献   

19.
Obesity is now a worldwide epidemic ensuing an increase in comorbidities’ prevalence, such as insulin resistance, type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease (CVD), autoimmune diseases, and some cancers, CVD being one of the main causes of death in the world. Several studies provide evidence for an association between MAFLD and atherosclerosis and cardio-metabolic disorders, including CVDs such as coronary heart disease and stroke. Therefore, the combination of MAFLD/NASH is associated with vascular risk and CVD progression, but the underlying mechanisms linking MAFLD/NASH and CVD are still under investigation. Several underlying mechanisms may probably be involved, including hepatic/systemic insulin resistance, atherogenic dyslipidemia, hypertension, as well as pro-atherogenic, pro-coagulant, and pro-inflammatory mediators released from the steatotic/inflamed liver. MAFLD is strongly associated with insulin resistance, which is involved in its pathogenesis and progression to NASH. Insulin resistance is a major cardiovascular risk factor in subjects without diabetes. However, T2D has been considered the most common link between MAFLD/NASH and CVD. This review summarizes the evidence linking obesity with MAFLD, NASH, and CVD, considering the pathophysiological molecular mechanisms involved in these diseases. We also discuss the association of MAFLD and NASH with the development and progression of CVD, including structural and functional cardiac alterations, and pharmacological strategies to treat MAFLD/NASH and cardiovascular prevention.  相似文献   

20.
Excess calorie intake and a sedentary lifestyle have made non-alcoholic fatty liver disease (NAFLD) one of the fastest growing forms of liver disease of the modern world. It is characterized by abnormal accumulation of fat in the liver and can range from simple steatosis and non-alcoholic steatohepatitis (NASH) to cirrhosis as well as development of hepatocellular carcinoma (HCC). Biopsy is the golden standard for the diagnosis and differentiation of all NAFLD stages, but its invasiveness poses a risk for patients, which is why new, non-invasive ways of diagnostics ought to be discovered. Lipocalin-2 (LCN2), which is a part of the lipocalin transport protein family, is a protein formally known for its role in iron transport and in inflammatory response. However, in recent years, its implication in the pathogenesis of NAFLD has become apparent. LCN2 shows significant upregulation in several benign and malignant liver diseases, making it a good candidate for the NAFLD biomarker or even a therapeutic target. What makes LCN2 more interesting to study is the fact that it is overexpressed in HCC development induced by chronic NASH, which is one of the primary causes of cancer-related deaths. However, to this day, neither its role as a biomarker for NAFLD nor the molecular mechanisms of its implication in NAFLD pathogenesis have been completely elucidated. This review aims to gather and closely dissect the current knowledge about, sometimes conflicting, evidence on LCN2 as a biomarker for NAFLD, its involvement in NAFLD, and NAFLD-HCC related pathogenesis, while comparing it to the findings in similar pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号