首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel lanthana-promoted nickel catalyst supported on silica for the liquid phase hydrogenation of m-dinitrobenzene to m-phenylenediamine was prepared by an incipient wetness sequential impregnation method. It was found that Ni-La/SiO2 catalyst exhibited high activity and stability for m-dinitrobenzene hydrogenation. Over this catalyst, the conversion of m-dinitrobenzene and the yield of m-phenylenediamine were up to 97.1% and 93.5%, respectively,at 373 K and 2.6 MPa hydrogen pressure after reaction for 1 h.  相似文献   

2.
Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysilane( TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual copper loading of 19.0%(mass fraction).  相似文献   

3.
尹安远  郭秀英  戴维林  范康年 《化学学报》2009,67(15):1731-1736
采用原位合成法合成了介孔Cu/HMS催化剂, 并以草酸二甲酯催化加氢合成乙二醇为探针反应考察了不同焙烧温度对反应催化性能的影响, 结果表明焙烧温度为650 ℃时合成的催化剂在该反应中表现出最佳的催化性能. 在反应温度为200 ℃、压力为3 MPa、氢酯比为50、液时空速为0.74 h-1的条件下, 草酸二甲酯的转化率达到100%, 并且乙二醇的选择性达到97%. 采用X射线粉末衍射、N2低温吸附、H2-TPR、N2O滴定、X射线光电子能谱及傅利叶变换红外光谱对系列催化剂进行了系统表征, 阐述了焙烧温度对催化性能影响的本质原因. 研究表明焙烧温度能够影响活性铜物种的分散度和铜物种与载体间的相互作用, 从而影响草酸二甲酯催化加氢的催化性能.  相似文献   

4.
SiO2改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能   总被引:10,自引:2,他引:10  
以廉价的硅酸钠为硅源,碳酸钠为沉淀剂,采用共沉淀沉积法制备了SiO2改性的Cu-ZnO/ HZSM-5催化剂,用XRD、SEM、H2-TPR、XPS等手段进行了表征,考察了对CO2加氢合成二甲醚的催化活性。结果表明,SiO2促进了催化剂前驱体的分散,延缓了焙烧后催化剂晶粒的长大和颗粒的团聚。SiO2改性的同时影响了CuO的分布状态及还原过程。1.0%SiO2改性的Cu-ZnO/HZSM-5催化剂,用于CO2加氢合成二甲醚,CO2转化率和二甲醚的收率达28.53%和16.34%,与未经改性的Cu-ZnO/ HZSM-5相比,CO2转化率和二甲醚收率分别提高了20%和34%;继续增大SiO2用量,催化剂的活性反而降低。XPS和AES表征表明,1.0%SiO2改性的Cu-ZnO/HZSM-5催化剂中,Cu0是甲醇合成的活性中心,锌以ZnO的形式存在。  相似文献   

5.
Biorenewable resources such as carbohydrates are considered alternative feedstocks for oxygenated chemicals. This work investigates the stability of silica-supported Ru catalysts in the aqueous phase conversion of glucose to sorbitol. In situ X-ray absorption spectroscopy at the Ru K edge revealed that air-exposed silica-supported Ru was in an oxidized state but was subsequently reduced in aqueous solutions saturated with 40 bar H(2) at 373 K. Furthermore, exposure to aqueous phase conditions resulted in the sintering of Ru particles on the silica surface. However, the presence of glucose in the aqueous phase stabilized the growth of the Ru particles. Batchwise hydrogenation of glucose at 373 K and 80 bar H(2) over a Ru/SiO(2) (2.67 wt %) catalyst is nearly 100% selective to sugar alcohol with an average turnover frequency of 0.21 +/- 0.04 s(-1). The hydrogenation reaction was not mass transfer limited according to the Madon-Boudart criterion.  相似文献   

6.
负载型ZnO/SiO2及ZnO-SiO2溶胶凝胶催化剂的表面结构研究   总被引:2,自引:0,他引:2  
催化剂的表面结构不仅影响催化剂的催化活性, 而且还影响反应产物的选择性[1]. 制备催化剂的方法不同, 其表面结构及表面性质也不同[2~4]. 浸渍法简单实用, 有利于得到高分散、晶粒细小的高比表面催化剂, 而溶胶-凝胶法则由于其制备温度较低, 易于形成无定形的或介态的氧化物相[5]而可达到分子级的混合, 其活性组分能有效地嵌入网状结构中, 不易受外界的影响而聚集或长大, 因此对催化剂的稳定性更为有利[6,7].  相似文献   

7.
超细Pd—B/SiO2非晶态合金加氢反应的催化活性   总被引:8,自引:1,他引:7  
采用浸渍法并通过KBH4还原制备超细Pd-B/SiO2非晶态合金催化剂,以硝基苯加氢生成苯胺为目标反应,考察了上述催化剂的活性和选择性及热稳定性,并与晶态Pd-B/SiO2和Pd/SiO2催化剂及非负载型Pd-B非晶态合金催化剂进行了比较。  相似文献   

8.
 采用一氧化碳程序升温脱附(CO-TPD)和吸附的一氧化碳加氢程序升温表面反应(TPSR)考察了Fe助剂对Rh基催化剂上CO的脱附行为及吸附CO的加氢行为的影响.CO-TPD实验表明,在Rh/SiO2催化剂上CO有三个脱附峰.在Rh-Mn-Li/SiO2中加入0.05%Fe后,高温脱附CO比Rh/SiO2催化剂上相应的CO量大.增加Fe的负载量,CO的脱附量减少.TPSR实验中,CO加氢反应的主要产物是甲烷.不同组分的催化剂上甲烷的生成温度有如下顺序:Rh/SiO2(482K)<Rh-Mn-Li/SiO2(489K)<Rh-Fe/SiO2(494K)<Rh-Mn-Li-Fe/SiO2(501K).甲烷峰的产生伴随着CO(s)高温脱附峰的消失,说明甲烷是由强吸附的CO加氢生成的.  相似文献   

9.
由正硅酸乙酯水解制得的SiO2溶胶,在以γ—甲基丙烯酰氧丙基三甲氧基硅烷(TMSPM)为偶联剂的体系中,经溶胶-凝胶法制备了透明的光固化聚氨酯丙烯酸酯杂化材料[(PUA—TMSPM)/SiO2]。研究了盐酸浓度对(PUA-TMSPM)/SiO2结构与性能的影响。结果表明:随着pH值减小,硅溶胶体系和(PUA-TM-SPM)/SiO2杂化体系的热稳定性增大;盐酸摩尔分数XHCl的增加使(PUA-TMSPM)/SiO2光固化膜表面的两相界面结合更紧密,涂层变得更致密,并导致膜的硬度和耐磨性提高。  相似文献   

10.
金催化顺丁烯二酸酐的选择加氢反应   总被引:1,自引:0,他引:1  
马宇春  石峰  熊海  张庆华  邓友全 《化学学报》2004,62(13):1242-1246,J003
采用溶胶-凝胶法制备了一系列担载纳米金催化剂,用以催化顺丁烯二酸酐(简称顺酐,MA)的选择加氢反应.模板剂的引入改变了催化剂载体的结构,从而提高了其催化活性和对加氢产物丁二酸酐(SA)以及丁二酸二乙酯(DFAS)的选择性.同时考察了反应温度、溶剂、催化剂制备方法对顺酐选择加氢反应的影响以及催化剂的重复使用性能.实验结果表明,以焙烧处理除去模板剂十八胺的Au/SiO2-O(C)为催化剂时,顺酐选择加氢制取丁二酸酐和一步加氢酯化制取丁二酸二乙酯的效果最佳,其转化率以及产物选择性均大于99.5%.  相似文献   

11.
采用XRD、BET、TPR手段,研究了焙烧和还原温度对超细CuO-ZnO-SiO2催化剂的性质及其CO2加氢反应催化活性的影响.胶体在573-773K范围内焙烧生成CuO、Cu2O、ZnO晶相,随着焙烧温度继续升高,CuO和ZnO晶粒逐渐变大,但催化剂的比表面积和孔容变化很小.在973K焙烧后出现Zn2SiO4晶相,使催化剂比表积和孔容变小,导致催化剂活性降低.焙烧温度对催化剂活性的影响大于对CO2加氢产物分布的影响.在548-648K范围内,催化剂还原温度对其催化活性影响不大.703K高温还原后,可能由于Cu0晶粒的出现,使得催化剂的活性下降.TPR研究结果进一步表明,焙烧温度影响CuO同ZnO、SiO2之间的相互作用和催化剂的还原行为.  相似文献   

12.
合成了硅胶负载的聚(4-乙烯吡啶)或聚(2-乙烯吡啶)-聚(苯乙烯-顺丁烯二酸)-钯催化剂(P4VP-PSM-Pd/SiO_2和P2VP-PSM-Pd/SiO_2),研究了合成条件、组成等对其催化性能的影响及对丙烯酸甲酯的催化加氢性能。发现,同时含两种高分子的催化剂比只含一种高分子的催化剂具有较高的催化活性,催化剂在常温常压下对丙烯酸甲酯的氢化反应具有很高的催化活性和选择性,且能重复使用,表现出良好的稳定性。同时还研究了其它因素对催化剂性能的影响。  相似文献   

13.
制备方法对H2SO4固体酸结构和催化性能的影响   总被引:6,自引:0,他引:6  
 以溶胶-凝胶法和浸渍法制备了H2SO4固体酸催化剂. FT-IR, XRD和 29Si MAS NMR结果表明,两种方法得到的催化剂结构不同. FT-IR和 29Si MAS NMR结果表明,溶胶-凝胶法制备的固体酸H2SO4-SiO2中H2SO4和载体SiO2间存在相互作用; 1H MAS NMR结果表明,H2SO4-SiO2固体酸的酸强度和液体浓硫酸相当. 通过对柠檬酸与正丁醇的液/固相催化酯化反应比较了溶胶-凝胶法与浸渍法制备的固体酸的催化性能,结果表明,浸渍法得到的固体酸重复使用4次后活性消失; 溶胶-凝胶法制备的H2SO4-SiO2固体酸重复使用6次后仍显示出较高的活性和选择性.  相似文献   

14.
以天然植物多酚杨梅单宁(BT)改性的SiO2为载体,经吸附Pt4+、Na BH4还原和碳化处理制得Pt/SiO2-C催化剂.对所制备的催化剂进行了表征,并考察了催化剂对肉桂醛液相选择性催化加氢的性能.结果表明,由于杨梅单宁分子的分散稳定作用,使碳化过程中纳米Pt粒子粒径适度增长且保持高度分散.碳化温度影响杨梅单宁的脱除效果、纳米Pt粒子晶型与粒径,以及载体的比表面积与孔径,最终影响肉桂醛催化加氢性能.500℃碳化处理得到的Pt/SiO2-C-500催化剂的催化性能最佳,在乙醇为溶剂,323.25 K和2MPa氢压条件下,肉桂醛6 h转化率为82.98%,生成肉桂醇的选择性达到91.33%,表现出较高的催化活性和选择性.同时,该催化剂重复使用5次后其催化活性仍为第一次反应活性的81.18%,体现出优良的重复使用性.  相似文献   

15.
The complex Rh(cod)(sulfos) (Rh(I); sulfos = (-)O(3)S(C(6)H(4))CH(2)C(CH(2)PPh(2))(3); cod = cycloocta-1,5-diene), either free or supported on silica, does not catalyze the hydrogenation of benzene in either homogeneous or heterogeneous phase. However, when silica contains supported Pd metal nanoparticles (Pd(0)/SiO(2)), a hybrid catalyst (Rh(I)-Pd(0)/SiO(2)) is formed that hydrogenates benzene 4 times faster than does Pd(0)/SiO(2) alone. EXAFS and DRIFT measurements of in situ and ex situ prepared samples, batch catalytic reactions under different conditions, deuterium labeling experiments, and model organometallic studies, taken together, have shown that the rhodium single sites and the palladium nanoparticles cooperate with each other in promoting the hydrogenation of benzene through the formation of a unique entity throughout the catalytic cycle. Besides decreasing the extent of cyclohexa-1,3-diene disproportionation at palladium, the combined action of the two metals activates the arene so as to allow the rhodium sites to enter the catalytic cycle and speed up the overall hydrogenation process by rapidly reducing benzene to cyclohexa-1,3-diene.  相似文献   

16.
Ni-B/SiO2非晶态催化剂应用于硝基苯液相加氢制苯胺   总被引:26,自引:1,他引:26  
王明辉  李和兴 《催化学报》2001,22(3):287-290
 考察了Ni-B/SiO2非晶态催化剂在高压液相硝基苯加氢制苯胺反应中的催化活性和选择性.研究表明,该催化剂不仅具有很高的催化活性,而且对苯胺的选择性较高,优于RaneyNi以及其它Ni基催化剂.晶化导致催化剂失活.载体的存在不仅能提高催化剂的分散度,而且能对非晶态结构起稳定化作用;将催化剂保存在乙醇中可保持其活性不变.结合催化剂的表征,讨论了Ni-B/SiO2非晶态催化剂的催化性能与其结构的关系.  相似文献   

17.
采用浸渍法分别用硫酸锰、醋酸锰、氯化锰和硝酸锰为原料制备了Mn-H4SiW12O40/SiO2 杂多酸催化剂。在常压连续流动固定床反应器中,考察了二甲醚选择氧化制取甲缩醛的反应活性。实验结果表明,催化剂的催化活性顺序为Mn-Cl2H4SiW12O40/SiO2>Mn(NO3)2H4SiW12O40/SiO2>MnSO4H4SiW12O40/SiO2>Mn(AC)2H4SiW12O40/SiO2。并进一步考察了反应温度对不同锰盐前驱体催化剂性能的影响。结果表明,随温度的升高,硫酸锰修饰的H4SiW12O40/SiO2 催化剂催化氧化比较剧烈,在613K时二甲醚转化率高达42.4%,但此时甲缩醛选择性仅为0.9%。采用氯化锰修饰的H4SiW12O40/SiO2催化剂,二甲醚催化氧化反应较缓和,并且甲缩醛的选择性明显高于分别采用硫酸锰、醋酸锰和硝酸锰改性的催化剂,在593K反应1h时,二甲醚转化率为8.6%,甲缩醛选择性达到37.5%。H2-TPR结果显示,硫酸锰改性的催化剂高温氧化性能明显强于另外三种催化剂,氯化锰的修饰使得催化剂的低温氧化性能变强。XRD结果表明,MnCl2 H4SiW12O40/SiO2催化剂的衍射特征峰明显强于其他三种催化剂,并且发现了MnO2衍射特征峰。  相似文献   

18.
余锡宾  王桂华 《分子催化》1999,13(5):351-356
用Raman,XRD,SEM等技术,研究了Pd-B/SiO2非晶态合金的晶化过程及其对催化活性的影响。研究发现,Pd^2+能高度分散在SiO2载体上,并与载体发生作用,但Pd-B合金在载体上形成颗粒微细的原子簇,温度低于673K时,这些原子簇在SiO2载体上呈非晶态结构,并随着温度的增加而发生团聚。  相似文献   

19.
乙烯是合成聚乙烯的原料,其主要来源是石油裂解气,其中少量的乙炔杂质会严重毒化生产聚乙烯的催化剂,因此需要将其去除.对于乙炔选择加氢反应,传统工业上使用的是Pd基催化剂,尽管其乙炔转化率很高,但对乙烯的选择性很低.我们前期的研究发现,IB族金属(Au,Ag和Cu)与Pd形成的合金单原子催化剂可以有效地提高乙烯的选择性.作为与Pd同组的非贵金属,Ni催化剂在多种催化加氢反应中显示出优异活性,而在乙炔选择加氢反应中,Ni是否能够替代贵金属Pd尚无定论.本文系统地研究了IB金属对Ni/SiO2催化剂乙炔选择性加氢性能的影响.与Pd/SiO2催化剂不同,单金属Ni/SiO2催化剂在低温下不具有活性.将IB金属添加到Ni/SiO2催化剂中,可以显著提高其催化活性以及对乙烯的选择性.其中,AuNix/SiO2和CuNix/SiO2催化剂的催化活性随还原温度升高而提高,而AgNix/SiO2催化剂对预处理温度不敏感.通过调变IB/Ni原子比和还原温度优化了催化剂的催化性能,发现优化后的三种催化剂(CuNi0.125/SiO2、AgNi0.5/SiO2和AuNi0.5/SiO2)的活性和选择性随反应温度升高表现出相似的变化趋势.催化稳定性考察结果显示,CuNi0.125/SiO2催化剂表现出最高选择性和稳定性;尽管AuNi0.5/SiO2的初始活性最高,但是稳定性最低.采用XRD、TPR和微量吸附量热等表征手段对不同IB金属对Ni基催化剂性质的影响进行了系统考察.以Cu-Nix/SiO2催化剂为例,H2-TPR测试结果表明,Cu-Ni双金属纳米颗粒的形成使得还原温度低于相应的单金属催化剂,表明铜和镍之间存在明显的相互作用.此外,通过TPR获得的CuNix/SiO2催化剂上的氢气消耗量与理论耗氢量相吻合,表明在还原处理的过程中双金属催化剂中的CuO和NiO可以被完全还原.乙炔的微量吸附量热结果表明,在CuNi0.125/SiO2,AgNi0.5/SiO2,AuNi0.5/SiO2和Ni0.5/SiO2催化剂上的初始吸附热分别为187,196,304和103 kJ/mol,即它们的初始乙炔吸附强度顺序为AuNi0.5/SiO2>AgNi0.5/SiO2>CuNi0.125/SiO2>Ni0.5/SiO2.该结果与三者的初始催化活性顺序一致,表明IB金属的加入可以增强乙炔在催化剂表面的吸附,从而提高催化活性.  相似文献   

20.
The effects of CeO2 contents and silica carder porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 catalysts in CO oxidation were investigated. The catalysts were characterized by N2 adsorption/desorption at low temperature, X-ray diffraction (XRD), temperature-programmed reduction by H2 (H2-TPR), oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS). The results suggested that, the ceria content and the porosity of SiO2 carder possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts. When appropriate content of CeO2(Ce content ≤8 wt%) was added, the catalytic activity was greatly enhanced. In the catalyst supported on silica carrier with larger pore diameter, higher dispersion of CuO was observed, better agglomeration-resistant capacity was displayed and more lattice oxygen could be found, thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号