首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better exploit manufacturing facilities and standardize cheese quality, milk composition could be standardized by fortifying its protein content with a milk protein concentrate (MPC) addition so avoiding partially skimming the milk. With this aim Mozzarella cheese was obtained adding citric acid into milk standardized at 4% protein and a fat to protein ratio of 1.0. Protein fortification was obtained adding MPC produced by ultrafiltration. Milk, whey, curd, cheese and stretching water were weighed and analysed for total solid, fat and protein content, to measure component recovery and yield. Yield increase (from 13.8% to 16.7%) was due to the higher recovery of the milk total solids and proteins in MPC cheese (48.2 and 78.3%, respectively) and to the slightly higher cheese moisture, obtained with a little modification of the cheese technology when adding MPC. Milk fat in cheese was lower than that reported in literature. Hot water stretching of the curd resulted in very low losses (1%) of protein and considerable losses (14%) of fat for both control and MPC cheeses. The likely reasons of this low recovery are discussed and it can be supposed that a further cheese yield increase is possible by changing the curd stretching procedures.  相似文献   

2.
A highly sensitive HPLC with fluorescence detection was developed for the determination of free fatty acids (FFAs) in milk and dairy products. For this purpose, the FFAs were extracted from small amounts of milk (1.0 mL), cheese (0.5 g) and butter (0.5 g) using Sep-Pak cartridge columns, and then derivatized to 9-anthrylmethyl esters with 9-anthryldiazomethane (ADAM). Good separations of the ADAM derivatives of 16 FFAs (C4-C18) that exist in milk, cheese and butter, which permitted quantitative estimation of their individual FFAs, were achieved by HPLC on a C18 column (Cadenza CD-C18, 150 x 3 mm i.d.) using gradient elution with methanol and water. The acid values calculated from the contents of individual FFAs were in good agreement with those obtained by the conventional titration method. These results demonstrate that the present HPLC method is simple, sensitive and precise, and could be utilized widely for determination of the FFAs in milk and dairy products.  相似文献   

3.
Fate of ivermectin residues in ewes' milk and derived products   总被引:1,自引:0,他引:1  
The fate of ivermectin (IVM) residues was studied throughout the processing of daily bulk milk from 30 ewes (taken up to 33 d following subcutaneous administration of 0.2 mg IVM/kg b.w.) in the following milk products: yoghurt made from raw and pasteurized milk; cheese after pressing; 30- and 60-day ripened cheese; and whey, secondary whey and whey proteins obtained after cheese-making (albumin cheese). The concentration of the H2B1a component of IVM was analysed in these dairy products using an HPLC method with fluorescence detection. The mean recovery of the method was, depending on the matrix, between 87 and 100%. Limits of detection in the order of only 0.1 microg H2B1a/kg of product were achieved. Maximum concentrations of IVM were detected mostly at 2 d after drug administration to the ewes. The highest concentration of IVM was found on day 2 in 60-day ripened cheese (96 microg H2B1a/kg cheese). Secondary whey was the matrix with the lowest concentration of IVM (<0.6 microg H2B1a/ kg). Residue levels fell below the limits of detection between day 5 (for secondary whey) and day 25 (for all cheese samples). In the matrices investigated, linear correlations between daily concentrations of IVM, milk fat and solid content were evident. During yoghurt production, fermentation and thermal stability of IVM was observed. During cheese production, approximately 35% of the IVM, present in the raw (bulk) milk samples, was lost. From the results it was concluded that the processing of ewes' milk did not eliminate the drug residues under investigation. The consequences of IVM in the human diet were discussed. Milk from treated animals should be excluded from production of fat products like cheese for longer after treatment with IVM than for lower fat products.  相似文献   

4.
《International Dairy Journal》2005,15(11):1122-1129
Polymerase chain reaction (PCR) has been applied for the specific detection of cows’ DNA in water buffalo milk and mozzarella cheese by using primers targeting the mitochondrial 12S ribosomal RNA gene. The use of specific primers for cow yielded a 346 bp fragment from cows’ milk DNA, whereas no amplification signal was obtained in sheep's, goats’ and water buffalo's milk DNA. Analysis of both buffalo milk and buffalo mozzarella cheese mixtures containing different percentages of cows’ milk or bovine mozzarella cheese, enabled the specific detection of cow's DNA with a sensitivity threshold of 0.1%. The proposed PCR assay represents a rapid and straightforward method for the detection of adulterations in water buffalo milk and mozzarella cheese.  相似文献   

5.
Feta cheese was manufactured by addition of skim milk retentate powder to the cheese milk. In comparison with the reference cheese 40% of the initial milk was substituted on protein base by the powder. This substitution had little or no effect on proteolysis, lipolysis and the rheological properties of the cheese. Also sensory evaluation demonstrated that the experimental cheese was of the same quality as the reference cheese. Protein substitution proved to have some important advantages, such as a better yield and more economical cheese production. Furthermore, the skim milk retentate powder seems to have fat replacing properties.  相似文献   

6.
Camel milk was processed into cheese using Camifloc and calcium chloride. Two types of cheeses were produced from camel milk, using Camifloc (CF cheese) and CaCl2 in addition to Camifloc (CFCC cheese). The study revealed the usefulness of Camifloc in coagulation of camel milk. The time of coagulation was found to be about 2–3 h, and the yield of CFCC cheese was found to be higher than the CF cheese, while a shelf life of 4 days was obtained for both cheeses. Both cheeses showed nonsignificant variations in compositional content except for the percentages of protein and ash, which showed significant differences at P < 0.001 and P < 0.05. Sensory evaluation by taste panellists was conducted to determine the acceptability of cheeses during the storage periods. Differences were found between the CF cheese and the CFCC cheese in saltiness and overall acceptability, and higher mean scores were recorded for the CF cheese than the CFCC cheese. The study recommends the use of Camifloc in making cheese from camel milk; and if CaCl2 is added, it can improve the cheese yield. However, we suggest that the rate of salting should be reduced, and further drying and storage of the cheese should be done.  相似文献   

7.
吴非  刘晓玲 《食品科技》2007,32(9):43-46
对混合型大豆干酪的成熟特性进行了研究。检测了混合型大豆干酪成熟过程中游离脂肪酸和氨基酸含量的变化,在扫描电镜下观察了不同成熟条件下干酪的微观结构。结果表明,成熟温度对游离脂肪酸含量影响不显著,对游离氨基酸含量影响显著;随着成熟时间的延长,饱和脂肪酸与不饱和脂肪酸含量之比下降,游离氨基酸含量变化较为显著;成熟对混合型大豆干酪的微观结构影响很大,使得干酪质地越来越致密均匀。  相似文献   

8.
谢芳  曾庆坤  李玲  林波  唐艳  农皓如 《中国酿造》2014,(11):162-165
为提高水牛乳豆乳混合干酪品质,分别利用单因素试验及正交试验对以雅致放射毛霉为表面发酵剂制备水牛乳豆乳混合发酵干酪的工艺进行了优化。通过优化确定了水牛乳豆乳混合干酪的最佳发酵条件为豆乳添加量15%,程序升温至41℃,霉菌孢子喷雾浓度1×10^6 C FU /m L,成熟时间为30 d。在此优化的工艺条件下,能得到较好品质的霉菌干酪产品。  相似文献   

9.
A method for making Domiati cheese (soft cheese) from a mixture of soybean milk and whole milk has been reconstructed. The results obtained showed some important differences in cheese characteristics as the result of using soybean milk, particularly in the higher moisture, soluble nitrogen and acidity contents. The main organoleptic property affected by the soymilk was the flavour. This improved on ripening.
A number of changes were observed during ripening. The presence of soymilk resulted in (1) less loss of cheese moisture and consequently cheese weight, (2) increase in the development of titratable acidity and (3) increase in protein breakdown.
It is suggested that the soybean milk activates the lactic acid, producing bacteria and the proteolytic enzymes present in cheese.  相似文献   

10.
The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency.  相似文献   

11.
The water content of different types of butter, processed cheeses and hard cheese was determined by classical oven drying, manual Karl Fischer titration and a combination of water release by heating and transferring the released water in a dried air stream into a Karl Fischer titration cell. This technique is also referred to as gas extraction of the water or combined method.  相似文献   

12.
Advances in dairy foods and dairy foods processing since 1981 have influenced consumers and processors of dairy products. Consumer benefits include dairy products with enhanced nutrition and product functionality for specific applications. Processors convert raw milk to finished product with improved efficiencies and have developed processing technologies to improve traditional products and to introduce new products for expanding the dairy foods market. Membrane processing evolved from a laboratory technique to a major industrial process for milk and whey processing. Ultra-filtration and reverse osmosis have been used extensively in fractionation of milk and whey components. Advances in cheese manufacturing methods have included mechanization of the making process. Membrane processing has allowed uniform composition of the cheese milk and starter cultures have become more predictable. Cheese vats have become larger and enclosed as well as computer controlled. Researchers have learned to control many of the functional properties of cheese by understanding the role of fat and calcium distribution, as bound or unbound, in the cheese matrix. Processed cheese (cheese, foods, spreads, and products) maintain their importance in the industry as many product types can be produced to meet market needs and provide stable products for an extended shelf life. Cheese delivers concentrated nutrients of milk and bio-active peptides to consumers. The technologies for the production of concentrated and dried milk and whey products have not changed greatly in the last 25 yr. The size and efficiencies of the equipment have increased. Use of reverse osmosis in place of vacuum condensing has been proposed. Modifying the fatty acid composition of milkfat to alter the nutritional and functional properties of dairy spread has been a focus of research in the last 2 decades. Conjugated linoleic acid, which can be increased in milkfat by alteration of the cow's diet, has been reported to have anticancer, anti-atherogenic, antidiabetic, and antiobesity effects for human health. Separating milk fat into fractions has been accomplished to provide specific fractions to improve butter spreadability, modulate chocolate meltability, and provide texture for low-fat cheeses.  相似文献   

13.
This report concerns measurement of paracasein in milk and transfer of protein from milk to cheese. In the main experiment, two vats of Cheddar cheese were made from each of 11 lots of milk from one large herd over a period of 7 mo. Exclusion of solutes from moisture in paracasein micelles in milk and cheese was central to estimation of paracasein and to the transfer of protein from milk to cheese and whey. Solute-exclusion by paracasein and its changes during cheesemaking could be visualized by considering paracasein micelles to be a very fine sponge. The sponge excludes solutes, especially the large solutes like whey proteins. The sponge shrinks during cheesemaking and expels solute-free liquid, thereby slightly diluting the whey surrounding the micelles inside the curd. Paracasein N in milk was calculated as the difference between total milk N and rennet whey N, the latter adjusted to its level in milk. Adjustment used appropriate solute-exclusion factors (h) of the protein fractions of whey and 1.08 for paracasein and associated salts. They were combined to give a factor Fpc, which adjusted the level of rennet whey N to its level in milk: 1.001 x (1 - 1.01 x FM/100 - Fpc x pc/100), where FM = fat in milk, pc = estimated paracasein, and 1.001 = dilution of milk by chymosin and CaCl2. The mean Fpc was 3.03. Differences in values were small among different procedures for calculating paracasein, but they are considered to be important because they represent biases, which, in turn, are important in analyses commercially. We conclude that solute exclusion by moisture in paracasein must have decreased during cheesemaking because the ratio of moisture to paracasein in the final cheese was 1.5, much less than the h of 2.6 for serum proteins by paracasein. Release of solute-excluding moisture from paracasein during cooking was likely the reason for lower total N in cheese whey than in the rennet whey in the paracasein analysis. Paracasein, estimated to be in cheese, curd fines, salted whey, and whey during cheddaring, was 98.21, 0.20, 0.25 and 0.19%, respectively, of the paracasein in milk for a total of 98.85% (SD of 22 vats = 0.46); the location of the missing paracasein is not known. On the other hand, recovery of milk N in cheese and wheys was 99.92% (SD = 0.37%). Nitrogen in paracasein and its hydrolysis products in cheese was estimated to be 98.51% of total cheese N. Proteose-peptone from milk appeared not to be included with the paracasein in appreciable amounts. Some was apparently included with denatured serum proteins during Rowland fractionation of whey, perhaps as a coprecipitate. Measured paracasein would include fat globule membrane proteins in milk containing fat, and denatured whey proteins in heated milks. It was concluded that the method of measurement and the associated calculations are integral parts of the definition and quantification of paracasein in milk.  相似文献   

14.
The aim of this work was to study the rheological, physicochemical and organoleptic characteristics of four types of halloumi cheese made from pure ovine milk, pure caprine milk or mixtures containing 15 or 30% caprine milk. All the milks were standardized for casein to fat ratio. Pure ovine milk gave the highest yield of halloumi cheese and caprine the lowest. No significant differences in acidity, pH, moisture, total protein and ash contents of the four types of cheese were found. In contrast, significant differences in soluble proteins, non-protein nitrogen, acid degree value and calcium contents were noted. Rheological examinations showed the hardness and the force at the point of fracture of caprine halloumi cheese to be lower than those of the other types of cheese. The same cheese presented the highest compression at the point of fracture and cohesiveness, while there were no differences in gumminess or chewiness. Members of the assessment panel showed a preference for halloumi cheese made from 30% caprine milk and 70% ovine milk.  相似文献   

15.
以生牛乳、白糖以及芝士酱为主要原料,以酸度和感官评价为检测指标,通过单因素试验和正交试验确定凝固型芝士风味发酵乳的最佳发酵工艺条件。结果表明,凝固型芝士风味发酵乳的最佳发酵工艺条件为白砂糖7.5%、芝士酱0.9%、发酵温度43 ℃,发酵时间5.5 h。在此优化条件下,成品感官评分为91分,酸度为78.9 °T,产品组织细腻均匀,无乳清水析出,酸甜适中,口感嫩滑,且具有芝士酱特有的风味。  相似文献   

16.
This study aimed to assess and compare the nutritional, technological, and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of the two stored in cold conditions for 21 d. The yield and centesimal composition of the cheeses were not affected by the type of milk used in their preparation. Reductions were observed in the moisture content, pH, proteolysis index, and instrumental hardness; moreover, increases were observed in the syneresis, acidity index, and depth of proteolysis index in all cheeses. The percentages of caprylic, capric, oleic, and linoleic fatty acids were higher in goat milk cheese and cheese made with a mixture of goat and cow milk compared with cow milk cheese, and a sensory evaluation revealed differences in color, flavor, and aroma between the cheeses. The preparation of Minas fresh cheese with a mixture of goat and cow milk can be a viable alternative for dairy products in the market that can be characterized as high-quality products that meet consumer demands.  相似文献   

17.
Whey was employed as a reconstituting medium for dried milk used for cheese making.Ras cheese was made from fresh milk; whey was collected and dried skim milk was used to prepare a reconstituted milk with 20% total solids. Ras cheese was made from it and this process was repeated a further three times.The addition of whey was beneficial in reducing, by 50%, the time necessary to raise the acidity of milk to make it suitable for rennet action. The time necessary to make it suitable for whey removal was also reduced by 50%. Consequently, the time required for pressing was only 8 h, instead of 16 h. Generally, the use of whey is considered to be a better process for Ras cheese making. In addition to the utilisation of whey, it produced a good and acceptable cheese. The cheese was manufactured within a shorter time than cheese made with fresh milk.  相似文献   

18.
Improving the yield of Mozzarella cheese by phospholipase treatment of milk   总被引:2,自引:0,他引:2  
Part-skim Mozzarella cheese was manufactured from milk hydrolyzed with fungal phospholipase A1 prior to renneting. The phospholipase treatment reduced fat losses in whey and cooking water and increased cheese yield as a result of improved fat and moisture retention in the cheese curd. The amount of phospholipids in the whey was reduced because of improved retention of lysophospholipids in the cheese curd. Water binding in the fresh curds and young cheeses up to 3 wk of storage was investigated by a 1H nuclear magnetic resonance spin-spin relaxation technique. In the fresh curds, 2 dominant water fractions were present, characterized by average spin-spin relaxation times (T2) of 14 and 86 to 89 ms, respectively. These 2 fractions of low- and high-molecular-mobility water were similar in all cheeses and presumed to represent water associated with the casein matrix and water present in the pores. A few hours after manufacture, cheeses made with phospholipase showed decreased T2 of the high-mobility fraction, indicating improved water-holding capacity. It is suggested that lysophospholipids released from the fat globule membranes act as surface-active agents in the cheese curd, helping emulsification of water and fat during processing and reducing syneresis. During 3 wk of storage after manufacture, the mobility of both water fractions increased in all cheeses, but was highest in the cheeses made with phospholipase. The increase in mobility during the first weeks of storage has earlier been ascribed to structural changes in the protein matrix, which in principle could be accelerated because of the higher moisture content. However, the microstructure of phospholipase-treated cheese was investigated by confocal laser scanning microscopy and found to be very similar to the control cheese during processing and up to 28 d of storage. In addition, flowability, stretchability, and browning were acceptable and similar in all the manufactured cheeses. Thus, phospholipase hydrolysis of cheese milk improved the cheese yield without changing the cheese microstructure, and resulted in cheese with functional properties that were identical to traditional Mozzarella cheese.  相似文献   

19.
Bulk tank milk was standardised to six levels of fat (3·0, 3·2, 3·4, 3·6, 3·8, 4·0%) and similarly to six levels of protein, thus giving a total of 36 combinations in composition. Milk was analyzed for total solids, fat, protein, casein, lactose and somatic cell count and was used to make laboratory-scale cheese. Cheese samples from each batch were assayed for total solids, fat, protein and salt. Losses of milk components in the whey were also determined. Least squares analysis of data indicated that higher protein level in milk was associated with higher protein and lower fat contents in cheese. This was accompanied by lower total solids (higher moisture) in cheese. Inversely, higher fat level in milk gave higher fat and lower protein and moisture contents in cheese. Higher fat level in milk resulted in lower retention of fat in cheese and more fat losses in the whey. Higher protein level in milk gave higher fat retention in cheese and less fat losses in the whey. Regression analysis showed that cheese fat increased by 4·22%, while cheese protein decreased by 2·61% for every percentage increase in milk fat. Cheese protein increased by 2·35%, while cheese fat decreased by 6·14% per percentage increase in milk protein. Milk with protein to fat ratio close to 0·9 would produce a minimum of 50% fat in the dry matter of cheese.  相似文献   

20.
Accuracy and repeatability of complexometric methods for measuring calcium in cheese are limited by titration endpoints that are difficult to recognize. Much of this difficulty results from turbidity during titration. An alternative procedure is described in which 2 to 3 g of cheese are ashed, dissolved in dilute acid, and added calcium chloride is back titrated with ethylenediaminetetraacetic acid using hydroxy naphthol blue as indicator. Samples remain free of turbidity, and the titration endpoint is recognized easily.Recovery of calcium from solutions containing magnesium and phosphate was 100.9 ± .3%, indicating that a portion of sample magnesium (about 12%) also was measured. Error caused by magnesium recovery represented less than 1% of true calcium content.Analyses of 10 Cheddar cheese samples by the proposed method and by atomic emission differed by an average of .010% calcium. Mean values of the 10 samples did not differ significantly (P>.05) between methods. Duplicate analyses of 67 Cheddar cheese samples differed by an average of .008 ± .006% calcium. Similar repeatability was achieved by several inexperienced analysts. The method is applied readily to other dairy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号