首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to various environmental stresses, eukaryotic cells down-regulate protein synthesis by phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In mammals, the phosphorylation was shown to be carried out by eIF-2alpha kinases PKR and HRI. We report the identification and characterization of a cDNA from rat pancreatic islet cells that encodes a new related kinase, which we term pancreatic eIF-2alpha kinase, or PEK. In addition to a catalytic domain with sequence and structural features conserved among eIF-2alpha kinases, PEK contains a distinctive amino-terminal region 550 residues in length. Using recombinant PEK produced in Escherichia coli or Sf-9 insect cells, we demonstrate that PEK is autophosphorylated on both serine and threonine residues and that the recombinant enzyme can specifically phosphorylate eIF-2alpha on serine-51. Northern blot analyses indicate that PEK mRNA is expressed in all tissues examined, with highest levels in pancreas cells. Consistent with our mRNA assays, PEK activity was predominantly detected in pancreas and pancreatic islet cells. The regulatory role of PEK in protein synthesis was demonstrated both in vitro and in vivo. The addition of recombinant PEK to reticulocyte lysates caused a dose-dependent inhibition of translation. In the Saccharomyces model system, PEK functionally substituted for the endogenous yeast eIF-2alpha kinase, GCN2, by a process requiring the serine-51 phosphorylation site in eIF-2alpha. We also identified PEK homologs from both Caenorhabditis elegans and the puffer fish Fugu rubripes, suggesting that this eIF-2alpha kinase plays an important role in translational control from nematodes to mammals.  相似文献   

2.
Phosphorylation of eIF-2 alpha in Saccharomyces cerevisiae by the protein kinase GCN2 leads to inhibition of general translation initiation and a specific increase in translation of GCN4 mRNA. We isolated mutations in the eIF-2 alpha structural gene that do not affect the growth rate of wild-type yeast but which suppress the toxic effects of eIF-2 alpha hyperphosphorylation catalyzed by mutationally activated forms of GCN2. These eIF-2 alpha mutations also impair translational derepression of GCN4 in strains expressing wild-type GCN2 protein. All four mutations alter single amino acids within 40 residues of the phosphorylation site in eIF-2 alpha; however, three alleles do not decrease the level of eIF-2 alpha phosphorylation. We propose that these mutations alter the interaction between eIF-2 and its recycling factor eukaryotic translation initiation factor 2B (eIF-2B) in a way that diminishes the inhibitory effect of phosphorylated eIF-2 on the essential function of eIF-2B in translation initiation. These mutations may identify a region in eIF-2 alpha that participates directly in a physical interaction with the GCN3 subunit of eIF-2B.  相似文献   

3.
A family of protein kinases regulate translation initiation in response to cellular stresses by phosphorylation of eukaryotic initiation factor-2 (eIF-2). One family member from yeast, GCN2, contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic domain. It is thought that uncharged tRNA accumulating during amino acid starvation binds to the synthetase-related sequences and stimulates phosphorylation of the alpha subunit of eIF-2. In this report, we define another domain in GCN2 that functions to target the kinase to ribosomes. A truncated version of GCN2 containing only amino acid residues 1467 to 1590 can independently associate with the translational machinery. Interestingly, this region of GCN2 shares sequence similarities with the core of the double-stranded RNA-binding domain (DRBD). Substitutions of the lysine residues conserved among DRBD sequences block association of GCN2 with ribosomes and impaired the ability of the kinase to stimulate translational control in response to amino acid limitation. Additionally, as found for other DRBD sequences, recombinant protein containing GCN2 residues 1467-1590 can bind double-stranded RNA in vitro, suggesting that interaction with rRNA mediates ribosome targeting. These results indicate that appropriate ribosome localization of the kinase is an obligate step in the mechanism leading to translational control by GCN2.  相似文献   

4.
In amino acid-starved yeast cells, inhibition of the guanine nucleotide exchange factor eIF2B by phosphorylated translation initiation factor 2 results in increased translation of GCN4 mRNA. We isolated a suppressor of a mutant eIF2B. The suppressor prevents efficient GCN4 mRNA translation due to inactivation of the small ribosomal subunit protein Rps31 and results in low amounts of mutant 40 S ribosomal subunits. Deletion of one of two genes encoding ribosomal protein Rps17 also reduces the amounts of 40 S subunits but does not suppress eIF2B mutations or prevent efficient GCN4 translation. Our findings show that Rps31-deficient ribosomes are altered in a way that decreases the eIF2B requirement and that the small ribosomal subunit mediates the effects of low eIF2B activity on cell viability and translational regulation in response to eIF2 phosphorylation.  相似文献   

5.
6.
A eukaryotic translation initiation factor 2 (eIF-2)-associated 67 kDa glycoprotein (p67) protects the eIF-2 alpha-subunit from inhibitory phosphorylation by eIF-2 kinases, and this promotes protein synthesis in the presence of active eIF-2 alpha kinases in vitro [Ray, M. K., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 539-543]. We have now examined the effect of overexpression of this cellular eIF-2 kinase inhibitor in an in vivo system using transiently transfected COS-l cells. In this system, coexpression of genes that inhibit PKR activity restores translation of plasmid-derived mRNA. We now report the following. (1) Transient transfection of COS-1 cells with a p67 expression vector increased p67 synthesis by 20-fold over endogenous levels in the isolated subpopulation of transfected cells. (2) Cotransfection of p67 cDNA increased translation of plasmid-derived mRNAs. (3) Overexpression of p67 reduced phosphorylation of coexpressed eIF-2 alpha. (4) p67 synthesis was inhibited by cotransfection with an eIF-2 alpha mutant S51D, a mutant that mimics phosphorylated eIF-2 alpha, indicating that p67 cannot bypass translational inhibition mediated by phosphorylation of the eIF-2 alpha-subunit. These results show that the cellular protein p67 can reverse PKR-mediated translational inhibition in intact cells.  相似文献   

7.
eIF2B is a five-subunit guanine nucleotide exchange factor that is negatively regulated by phosphorylation of the alpha subunit of its substrate, eIF2, leading to inhibition of translation initiation. To analyze this regulatory mechanism, we have characterized 29 novel mutations in the homologous eIF2B subunits encoded by GCD2, GCD7, and GCN3 that reduce or abolish inhibition of eIF2B activity by eIF2 phosphorylated on its alpha subunit [eIF2(alphaP)]. Most, if not all, of the mutations decrease sensitivity to eIF2(alphaP) without excluding GCN3, the nonessential subunit, from eIF2B; thus, all three proteins are critical for regulation of eIF2B by eIF2(alphaP). The mutations are clustered at both ends of the homologous region of each subunit, within two segments each of approximately 70 amino acids in length. Several mutations alter residues at equivalent positions in two or all three subunits. These results imply that structurally similar segments in GCD2, GCD7, and GCN3 perform related functions in eIF2B regulation. We propose that these segments form a single domain in eIF2B that makes multiple contacts with the alpha subunit of eIF2, around the phosphorylation site, allowing eIF2B to detect and respond to phosphoserine at residue 51. Most of the eIF2 is phosphorylated in certain mutants, suggesting that these substitutions allow eIF2B to accept phosphorylated eIF2 as a substrate for nucleotide exchange.  相似文献   

8.
Regulation of protein synthesis by eukaryotic initiation factor-2alpha (eIF-2alpha) phosphorylation is a highly conserved phenomenon in eukaryotes that occurs in response to various stress conditions. Protein kinases capable of phosphorylating eIF-2alpha have been characterized from mammals and yeast. However, the phenomenon of eIF2-alpha-mediated regulation of protein synthesis and the presence of an eIF-2alpha kinase has not been demonstrated in higher plants. We show that plant eIF-2alpha (peIF-2alpha) and mammalian eIF-2alpha (meIF-2alpha) are phosphorylated similarly by both the double-stranded RNA-binding kinase, pPKR, present in plant ribosome salt wash fractions and the meIF-2alpha kinase, PKR. By several criteria, phosphorylation of peIF-2alpha is directly correlated with pPKR protein and autophosphorylation levels. Significantly, pPKR is capable of specifically phosphorylating Ser51 in a synthetic eIF-2alpha peptide, a key characteristic of the eIF-2alpha kinase family. Taken together, these data support the concept that pPKR is a member of the eIF-2alpha kinase family. In addition, the inhibition of brome mosaic virus RNA in vitro translation in wheat germ lysates by the addition of double-stranded RNA, phosphorylated peIF-2alpha, meIF-2alpha, or activated human PKR suggests that plant protein synthesis may be regulated via phosphorylation of eIF-2alpha.  相似文献   

9.
Protein kinase PKR is activated in mammalian cells during viral infection, leading to phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha) and inhibition of protein synthesis. This antiviral response is thought to be mediated by association of double-stranded RNA (ds-RNA), a by-product of viral replication, with two ds-RNA-binding domains (DRBDs) located in the amino terminus of PKR. Recent studies have observed that expression of mammalian PKR in yeast leads to a slow growth phenotype due to hyperphosphorylation of eIF-2alpha. In this report, we observed that while DRBD sequences are required for PKR to function in the yeast model system, these sequences are not required for in vitro phosphorylation of eIF-2alpha. To explain this apparent contradiction, we proposed that these sequences are required to target the kinase to the translation machinery. Using sucrose gradient sedimentation, we found that wild-type PKR was associated with ribosomes, specifically with 40 S particles. Deletions or residue substitutions in the DRBD sequences blocked kinase interaction with ribosomes. These results indicate that in addition to mediating ds-RNA control of PKR, the DRBD sequences facilitate PKR association with ribosomes. Targeting to ribosomes may enhance in vivo phosphorylation of eIF-2alpha, by providing PKR access to its substrate.  相似文献   

10.
Genomic and cDNA clones homologous to the yeast GCN2 eIF-2alpha kinase (yGCN2) were isolated from Drosophila melanogaster. The identity of the Drosophila GCN2 (dGCN2) gene is supported by the unique combination of sequence encoding a protein kinase catalytic domain and a domain homologous to histidyl-tRNA synthetase and by the ability of dGCN2 to complement a deletion mutant of the yeast GCN2 gene. Complementation of Deltagcn2 in yeast by dGCN2 depends on the presence of the critical regulatory phosphorylation site (serine 51) of eIF-2alpha. dGCN2 is composed of 10 exons encoding a protein of 1589 amino acids. dGCN2 mRNA is expressed throughout Drosophila development and is particularly abundant at the earliest stages of embryogenesis. The dGCN2 gene was cytogenetically and physically mapped to the right arm of the third chromosome at 100C3 in STS Dm2514. The discovery of GCN2 in higher eukaryotes is somewhat unexpected given the marked differences between the amino acid biosynthetic pathways of yeast vs. Drosophila and other higher eukaryotes. Despite these differences, the presence of GCN2 in Drosophila suggests at least partial conservation from yeast to multicellular organisms of the mechanisms responding to amino acid deprivation.  相似文献   

11.
The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit alpha (eIF2alpha) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2alpha kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop.  相似文献   

12.
The alpha-subunit of eukaryotic initiation factor eIF2 (eIF2alpha) plays an important role in the regulation of mRNA translation through modulation of the interaction of eIF2 and a second initiation factor, eIF2B. The interaction of the two proteins is regulated in vivo by phosphorylation of eIF2alpha at Ser51. In the present study, rat eIF2alpha was expressed in Sf21 cells using the baculovirus expression system. The recombinant protein was purified to >90% homogeneity in a single immunoaffinity chromatographic step. The protein was free of endogenous eIF2alpha kinase activity and was rapidly phosphorylated by the eIF2alpha kinases HCR and PKR. A variant of eIF2alpha in which the phosphorylation site was changed to Ala was also expressed and purified. The variant eIF2alpha was not phosphorylated by either HCR or PKR, demonstrating that the kinases specifically phosphorylate the correct site in the recombinant protein even in the absence of the other two subunits of the protein. In summary, a rapid and inexpensive method for obtaining eIF2alpha has been developed. Use of the wildtype and variant forms of eIF2alpha to measure eIF2alpha kinase activity in cell and tissue extracts should greatly facilitate examination of the regulation of mRNA translation under a variety of conditions.  相似文献   

13.
The cap structure and the poly(A) tail synergistically activate mRNA translation in vivo. Recent work using Saccharomyces cerevisiae spheroplasts and a yeast cell-free translation system revealed that the poly(A) tail can function as an independent promotor for ribosome recruitment, to internal initiation sites within an mRNA. This raises the question of how regulatory upstream open reading frames and translational repressor proteins binding to the 5'UTR can function, as well as how regulated polyadenylation can support faithful activation of protein synthesis. We investigated the function of the regulatory upstream open reading frame 4 from the yeast GCN 4 gene and the effect of IRP-1 binding to an iron-responsive element introduced into the 5' UTR of reporter mRNAs. Both manipulations effectively block cap-dependent translation, whereas ribosome recruitment promoted by the poly(A) tail under non-competitive conditions can efficiently bypass both blocks. We show that the synergistic use of both, the cap structure and the poly-A tail enforced by mRNA competition reinstates the full extent of translational control by both types of 5' UTR regulatory elements. With a view towards regulated polyadenylation, we studied the function of poly(A) tails of defined length on the translation of capped mRNAs. We find that poly(A) tail elongation increases translational efficiency, particularly under competitive conditions. Our results integrate recent findings on the function of the poly(A) tail into an understanding of translational control.  相似文献   

14.
Primary T-cells are metabolically quiescent, with little DNA, RNA or protein synthesis. Upon mitogenic stimulation the rate of protein synthesis increases 10-fold. We have studied the role of eIF-2 and eIF-4 alpha (eIF-4E) expression in the mechanism of translational activation. During this period, the levels of eIF-2 alpha and eIF-4 alpha mRNA increase some 50-fold. Similar to the increase in ribosomes and mRNA, the number of eIF-2 alpha, eIF-2 beta, and eIF-4 alpha molecules per cell also increase 2-3-fold. This suggests that in addition to an increase in the pool size of translational components, an additional mechanism exists which results in an increased efficiency of factor utilization. We have looked at initiation factor phosphorylation. We find that eIF-2 alpha does not undergo significant changes in its phosphorylation state nor is there a change in the efficiency of eIF-2 utilization. However, there is a rapid increase in the phosphorylation state of eIF-4 alpha which correlates with the rapid increase in translational activity. It thus appears there are 2 distinct components responsible for the translational activation of quiescent T-cells during mitogenic stimulation. The first is the phosphorylation of eIF-4 alpha, with a concomitant increase in the efficiency of eIF-4 alpha utilization. The second is an increase in the pool sizes of eIF-2 and eIF-4 alpha.  相似文献   

15.
16.
Several translation initiation factors in mammals and yeast are regulated by phosphorylation. The phosphorylation state of these factors is subject to alteration during development, environmental stress (heat shock, starvation, or heme deprivation), or viral infection. The phosphorylation state and the effect of changes in phosphorylation of the translation initiation factors of higher plants have not been previously investigated. We have determined the isoelectric states for the wheat translation initiation factors eIF-4A, eIF-4B, eIF-4F, eIF-iso4F, and eIF-2 and the poly(A)-binding protein in the seed, during germination, and following heat shock of wheat seedlings using two-dimensional gel electrophoresis and Western analysis. We found that the developmentally induced changes in isoelectric state observed during germination or the stress-induced changes were consistent with changes in phosphorylation. Treatment of the phosphorylated forms of the factors with phosphatases confirmed that the nature of the modification was due to phosphorylation. The isoelectric states of eIF-4B, eIF-4F (eIF-4E, p26), eIF-iso4F (eIF-iso4E, p28), and eIF-2alpha (p42) were altered during germination, suggesting that phosphorylation of these factors is developmentally regulated and correlates with the resumption of protein synthesis that occurs during germination. The phosphorylation of eIF-2beta (p38) or poly(A)-binding protein did not change either during germination or following a thermal stress. Only the phosphorylation state of two factors, eIF-4A and eIF-4B, changed following a heat shock, suggesting that plants may differ significantly from animals in the way in which their translational machinery is modified in response to a thermal stress.  相似文献   

17.
Phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) is a common cellular mechanism to limit protein synthesis in stress conditions. Baculovirus PK2, which resembles the C-terminal half of a protein kinase domain, was found to inhibit both human and yeast eIF2alpha kinases. Insect cells infected with wild-type, but not pk2-deleted, baculovirus exhibited reduced eIF2alpha phosphorylation and increased translational activity. The negative regulatory effect of human protein kinase RNA-regulated (PKR), an eIF2alpha kinase, on virus production was counteracted by PK2, indicating that baculoviruses have evolved a unique strategy for disrupting a host stress response. PK2 was found in complex with PKR and blocked kinase autophosphorylation in vivo, suggesting a mechanism of kinase inhibition mediated by interaction between truncated and intact kinase domains.  相似文献   

18.
The 5' leader (Omega) of tobacco mosaic viral RNA functions as a translational enhancer. Sequence analysis of a 102-kD protein, identified previously as a specific Omega RNA-binding protein, revealed homology to the HSP101/HSP104/ClpB family of heat shock proteins and its expression in yeast complemented a thermotolerance defect caused by a deletion of the HSP104 gene. Up to a 50-fold increase in the translation of Omega-luc, but not luc mRNA was observed in yeast expressing the tobacco HSP101 whereas Omega failed to enhance translation in the absence of HSP101. Therefore, HSP101 and Omega comprise a two-component translational regulatory mechanism that can be recapitulated in yeast. Analysis of HSP101 function in yeast translation mutants suggested that the initiation factor (eIF) 3 and specifically one (TIF4632) of the two eIF4G proteins were required for the HSP101-mediated enhancement. The RNA-binding and translational regulatory activities of HSP101 were inactive in respiring cells or in cells subject to nutrient limitation, but its thermotolerance function remained unaffected. This is the first identification of a protein required for specific translational enhancement of capped mRNAs, the first report of a translational regulatory function for any heat-shock protein, and the first functional distinction between the two eIF4G proteins present in eukaryotes.  相似文献   

19.
20.
The rate-limiting step for cap-dependent translation initiation in eukaryotes is recruitment of mRNA to the ribosome. An early event in this process is recognition of the m7GTP-containing cap structure at the 5'-end of the mRNA by initiation factor eIF4E. In the nematode Caenorhabditis elegans, mRNAs from 70% of the genes contain a different cap structure, m32,2,7GTP. This cap structure is poorly recognized by mammalian elF4E, suggesting that C. elegans may possess a specialized form of elF4E that can recognize m32,2,7GTP. Analysis of the C. elegans genomic sequence data base revealed the presence of three elF4E-like genes, here named ife-1, ife-2, and ife-3. cDNAs for these three eIF4E isoforms were cloned and sequenced. Isoform-specific antibodies were prepared from synthetic peptides based on nonhomologous regions of the three proteins. All three eIF4E isoforms were detected in extracts of C. elegans and were retained on m7GTP-Sepharose. One eIF4E isoform, IFE-1, was also retained on m32,2,7GTP-Sepharose. Furthermore, binding of IFE-1 and IFE-2 to m7GTP-Sepharose was inhibited by m32,2,7GTP. These results suggest that IFE-1 and IFE-2 bind both m7GTP- and m32,2, 7GTP-containing mRNA cap structures, although with different affinities. In conjunction with IFE-3, these eIF4E isoforms would permit cap-dependent recruitment of all C. elegans mRNAs to the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号