首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen is a chief source of energy. Catalytic decomposition produces hydrogen and carbon. In this work, x%M/Al2O3 (where M is Ni, Co and combined Ni-Co, and x is 10%, 15%, and 30%) has been successfully employed as a catalyst. The effect of activation temperature and active metal type and loading on catalyst perfomance was investigated. The catalysts were characterized with BET, XRD, TPO, TPR, TEM, XPS, and Raman. The results displayed that the 30%Co/Al2O3 catalyst activated at 500°C provided the greatest catalytic performance toward methane conversion. 30%Co/Al2O3 catalyst activated at 500°C formed amorphous carbon.  相似文献   

2.
The HZSM-5/Al2O3 molecular sieve catalyst was modified by phosphoric acid, tetraeth-oxysilane, tetrabutyl titanate, and boric acid, respectively. Properties of modified catalysts are characterized. The results show that the specific surface area declines and the acid density increases after modification of the catalysts, and the strong acid strength of Si/HZSM-5/Al2O3 catalyst enhanced. Modified catalysts performances are evaluated on fixed bed reactor using hydrocracking tail oil from a refinery as raw material. Results show that the Si/HZSM-5/Al2O3 catalyst has better catalytic dewaxing effect and stability than the other modified catalysts.  相似文献   

3.
ABSTRACT

The conversion of methylcyclopentane (MCP) in hydrogen on fresh and deactivating Pt/Al2O3 catalyst to hydrogenolysis products (2-methylpentane, 3-methylpentane and n-hexane), cyclohexane and benzene was studied in a Berty CSTR at various partial pressures of MCP and H2, and at a total pressure of 1 atm. For the kinetic studies, temperatures between 370 – 400° and W/F values up to 0.33 g min/cm3 were used. The conversion of MCP was found to increase with increase in temperature at all the MCP partial pressures investigated. The hydrogenolysis products and benzene composition generally increased with increase in temperature and W/F. The mechanism for the reforming of MCP was similar to that proposed by Dartigues et al. (1978) except that the formation of hydrogenolysis products was accounted for in this formulation. Eleven rate models were developed and tested and six satisfied the set criteria. Since hydrogenation/dehydrogenation and desorption steps are relatively rapid, the conversion step to hydrogenolysis products was deemed the only rate determining step with an activation energy of 36.31 kcal/gmol. For the deactivation studies, the model of Corella and Asua (1982) was used for the development of two deactivation models. The only model found to predict the deactivation behavior was the step leading to the formation of the coke precursor as rate controlling.  相似文献   

4.
Abstract

The Ni-based catalysts have more advantages than the most widely used Pd-based catalysts in selective hydrogenating of the butadiene in fluid catalytic cracking (FCC) C4 fraction. But the selectivity and stability of the Ni-based catalysts aren't good. The sulfuration pretreatment is an effective process to improve the performance of the Ni/Al2O3 catalysts. The sulfuration conditions of the Ni/Al2O3 catalyst have been studied in this article. The results showed the fittest conditions are that the catalyst was in-situ presulfurized for 60 min by the solution of S concentration 0.07 mol/L. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that the presulfurization declined the Ni crystal dimension.  相似文献   

5.
Abstract

Mordenite modified with Al2O3 (Al2O3/mordenite) was synthesized and used for the desulfurization of FCC gasoline. The influences of operating parameters on the results were studied for the model solution composed of dibenzothiophene (DBT) and isooctane. Al2O3/mordenite exhibits higher sulfur capacity than other kinds of chemisorbents. The suitable composition of the chemisorbent is 30 wt% Al2O3 to 70 wt% mordenite. The optimal operating parameters are: temperature 160°C; velocity 3 h?1 (WHSV). Under the stated conditions, desulfurization was carried out for the FCC gasoline with sulfur content of 220.4 μg/g. The chemisorbent can maintain the sulfur content under 50 μg/g for 40 h and has good regeneration ability after desorption using benzene.  相似文献   

6.
Hydrogen is a clean energy carrier that does not exist in nature in its pure form and should be acquired from other fossil fuels and organic materials. In this article, an experimental study was done to evaluate the potential of steam reforming of shale gas over Al2O3 supported Ni-Cu nano-catalysts for hydrogen production. By increasing reaction temperature, the shale gas conversion continuously increased. The introduction of additional steam to reactor had a positive impact on hydrogen yield, but its impact was not as significant as reaction temperature. As a result, the catalytic activity of Ni-Cu/Al2O3 prepared by impregnation was higher than the Ni-Cu/Al2O3 prepared by co-precipitation method.  相似文献   

7.
Abstract

Abstract Pd/Al2O3 catalysts were prepared by wet impregnation using K2PdCl4, (NH4)2PdCl4, and Pd(NO3)2 as precursors. All catalysts were characterized by means of inductively coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction (TPR), X-ray diffraction (XRD), and CO chemisorption. The results obtained in the hydrogenation of cumene hydroperoxide (CHP) to α-cumyl alcohol (CA) showed that Pd/Al2O3 catalyst prepared from Pd(NO3)2 exhibited the highest turnover frequency (TOF) value and the greatest deactivation extent, whereas Pd/Al2O3 catalyst prepared from (NH4)2PdCl4 displayed the lowest TOF value but the best stability.  相似文献   

8.
A novel one-step process for co-production of dimethyl ether (DME) and methanol, in the liquid phase, was conceived as an advance over the liquid phase methanol synthesis process (LPMeOHtm). This direct, one-step DME process (LPDMEtm) is based on the application of “dual catalysis”, where 2 functionally different yet compatible catalysts are used as a physical mixture, well-dispersed in the inert liquid phase. Three different reactions, methanol synthesis (via CO and CO2), water-gas shift, and methanol dehydration (to form DME) take place over the 2 catalysts, Cu/ZnO/Al2O3 and typically γ-Al2O3. The thermodynamic and kinetic coupling of methanol dehydration reaction (very fast and at/near thermodynamic equilibrium) with the methanol synthesis reaction (slower kinetics and highly thermodynamic) leads to the observed “chemical synergy”. This synergy helps overcome the limitation on thermodynamic equilibrium conversion, and increases the per-pass syngas conversion and reactor productivity. The catalyst deactivation phenomena in LPDMEtm proess is also greatly alleviated compared to methanol alone; the increase in syngas conversion and methyl equivalent productivity (MEP) are sustained over a longer on-stream time.

Here, in this review, we survey the salient developments in the LPDMEtm process since its inception, first at UA research laboratories and elsewhere including Air Products and Chemicals, Inc. We demonstrate the rationale of the LPDMEtm process, and then outline briefly the research studies in the two processes, that illustrate the chemical synergy in the LPDMEtm process. This successful example of “cooperative catalysis” can be adapted in principle to many other organic reactions.  相似文献   


9.
ABSTRACT

The conversion of n-octane on Pt/Al2O3 catalyst was found to pass through pronounced maxima with the variation of the partial pressure of hydrogen at temperatures between 420°C-460°C, PN = 7·63 × 10-3 atm and W/F = 0·11lg min cm-3. The products of reaction were hydrocracked products, octane, ethylbenzene, o-.p-,m,-xylene and toluene. The order of appearance of the optimum PH for the various reactions were: Isooctane>Dehydrocyclized products>Hydrocracked products.

A sequence of elementary steps earlier postulated was found to predict the maximum in the n-octane PH profiles for the three temperatures investigated. The rate determining steps for the two rate equations that were found suitable were conversion of adsorbed isooctane to adsorbed o-xylene and ethylbenzene.  相似文献   

10.
用3 种浸渍程序制备CO2 CH4 重整制合成气的Ni Mg/Al2O3 催化剂,结果表明用二次不等量浸渍法制备的催化剂性能较好,程序升温实验也说明二次不等量浸渍法制备的催化剂其表面活牲Ni 粒子较多。  相似文献   

11.
In Part I of this series, it was seen that the favorable thermodynamic and kinetic coupling in the one-step LPDMEtm process – of methanol dehydration reaction (very rapid kinetics and at/near thermodynamic equilibrium) with the methanol synthesis reaction (slower kinetics and under thermodynamic limitation) – leads the beneficial “chemical synergy”.

In this part II of Series, we briefly discern the intrinsic kinetics of the LPMeOHtm and LPDMEtm systems, and also shed light of the catalyst deactivation phenomena in these processes. Among the many reports on intrinsic kinetics of the one-step LPMeOHtm and LPDMEtm processes, two illustrative kinetic studies, from the groups of University of Akron and Air Products and Chemicals, Inc. are highlighted and discussed further. For development of intrinsic kinetic models of LPMeOHtm and LPDMEtm systems, a detailed thermodynamic framework has been developed which allows one to compute the liquid phase concentrations of reactive species, at phase equilibria and at chemical reaction equilibria. The intrinsic kinetic models of the LPDMEtm system are mainly based on the independent, component kinetic models of methanol synthesis (van den Bussche and Froment, 1996) and methanol dehydration (Bercic & Levec, 1992). From an overarching analysis of the deactivation of supported copper catalysts for methanol synthesis and other reactions (methanol decomposition and methanol steam reforming), we propose that thermal sintering, i.e., increase in Cu particle size and loss of metal surface area, is the only cause of catalyst deactivation in methanol synthesis reactions over Cu/ZnO/Al2O3 industrial-type methanol catalysts.  相似文献   


12.
陈庚  沈伟  徐华龙 《石油化工》2002,31(10):791-794
在常压固定床反应装置上研究了不同添加组分对顺酐加氢催化剂催化性能的影响 ,在反应温度 2 70℃ ,氢气与顺酐摩尔比 5 5 ,顺酐空速 0 16h- 1 的条件下 ,考察了添加碱金属、碱土金属、ⅥB族、ⅦB族和Ⅷ族金属元素对顺酐加氢催化剂活性的影响 ,并探讨了引起活性变化的原因。结果表明 ,在所有添加组分中 ,Cr是唯一既不影响催化剂活性又能提高γ -丁内酯选择性的助剂 ,但其添加量应不超过 5 % (摩尔分数 ) ;碱金属元素和Mo、Mg对催化剂有毒害作用 ;Ba对催化剂加氢活性影响不大 ;添加其它金属元素时催化剂的加氢活性虽下降不大 ,但γ -丁内酯的选择性却大幅度降低  相似文献   

13.
The liquid fuel gasification to obtain a clean flue gas for power generation and produce chemicals such as methanol is a most promising attempt to reduce the greenhouse gas emissions and air pollutants. In this paper, an equilibrium model of liquid fuel gasification was developed by the method of Gibbs free energy minimization. Two kinds of catalysts: Ni/CeO2/Al2O3 and Ni/Al2O3 were used to explore the influence of catalysts and operating conditions on hydrogen yield and char conversion. Over the ranges of operating conditions studied, the maximum hydrogen yield reached 52.47 vol%, whereas the char conversion varied between 45.2% and 98.5%. The results indicated that an appropriate reaction temperature is favorable for higher hydrogen production and char conversion. The model was validated with experimental data obtained from a fluidized bed gasifier.  相似文献   

14.
15.
One of the very long-standing controversies in CO/CO2 hydrogenation chemistry has been the following: What is the principal source of C in the methanol product, CO or CO2? In other words, do CO hydrogenation and CO2 hydrogenation proceed independently, in parallel, over the industrial Cu/ZnO/Al2O3 catalyst? Using state of the art experimental data and our analysis of prior studies and experimental techniques including isotopic labeling studies, including radioactive tracers, FTIR, XPS, and E-TEM, we discuss the experimental findings of the prior art and analyze the experimental and theoretical first-principles calculational data, to come up with a rational and cogent explanation for all controversial areas in methanol synthesis chemistry.  相似文献   

16.
Mn改性Cu/ZnO/Al_2O_3催化剂上甲醇水蒸气重整制氢研究   总被引:3,自引:0,他引:3  
研究了Mn改性Cu/ZnO/Al2O3催化剂上的甲醇水蒸气重整制氢反应。考察了催化剂组成、反应温度和水醇比对反应的影响。研究结果表明,当催化剂的组成为Cu45Zn45Al5Mn5,反应温度为220~240℃,n(H2O)/n(CH3OH)=1~1 2,液体空速为3 0h-1左右时,反应具有较好的甲醇转化率、氢气产率和较低的出口CO含量,同时催化剂表现出较好的稳定性。  相似文献   

17.
18.
采用浸渍法制备了助剂Ce掺杂的Ni/Al_2O_3催化剂,用于甘油重整气甲烷化反应,分别采用BET、XRD、H_2-TPR、CO_2-TPD等手段对催化剂进行了表征,并考察了Ce掺杂量、甲烷化温度、在线运行时间对Ce掺杂Ni/Al_2O_3催化甲烷化性能的影响。结果表明,掺杂的Ce会优先占据Ni/Al_2O_3催化剂的微孔,抑制活性组分Ni与载体Al_2O_3相互作用而生成尖晶石NiAl_2O_4,促进表面高度分散的活性Ni的生成,其催化还原性、甲烷化性能得以提高。3%(w)Ce掺杂的Ni/Al_2O_3在甘油重整气甲烷化反应中最佳温度范围为275~300℃,CO和CO_2转化率分别可达99%和75%以上,每千克甘油经水蒸气重整、甲烷化反应后生成的甲烷量达到570L以上。  相似文献   

19.
The influence of various amounts of phosphorus addition on performance of NiMoP/Al2O3 and CoMoP/Al2O3 nanocatalysts was examined in hydrodesulfurization of thiophene. The nanocatalysts were synthesized via sonochemical technique. The prepared samples were characterized by XRD, FESEM, BET, and FTIR analysis. The catalytic activity in hydrodesulfurization reaction was investigated in a batch stirred slurry reactor at 160°C and atmospheric pressure. The characterizations confirmed highly dispersion of active phase and formation of amorphous AlPO4 species on the support surface. The results obtained from thiophene hydrodesulfurization showed the nanocatalysts contained 1 wt% of phosphorus had the highest activity. The CoMoP/Al2O3 and NiMoP/Al2O3 nanocatalysts with optimum phosphorus loading nearly gave 100% conversion of thiophene, so that the sulfur compound concentration in final solution was less than 50 ppm.  相似文献   

20.
采用连续流动的固定床微反装置考察了Pt/SO24-/ZrO2-Al2O3(PSZA)在正己烷异构化反应中的催化行为。采用NH3-TPD、H2-TPR及TG表征了催化剂的酸性、还原性能及硫物种含量。结果表明,PSZA的初始异构化催化活性几乎不受反应温度的影响,而稳定性则与反应温度密切相关。低温下反应,催化剂在短时间内迅速失活,而提高反应温度可大大提高PSZA的反应稳定性。PSZA具有良好的再生性能,与新鲜催化剂相比,多次再生后的催化剂异构化催化活性基本没有变化。PSZA在低温下的快速失活与其催化活性中心产生的机理有关,而与其硫损失或硫物种的还原无关。在异构化反应过程中,催化剂通过氢溢流可产生强酸活性中心,并在反应过程中不断被消耗;在高温下通过氢溢流不断产生新的强酸中心,使催化活性保持稳定;而低温下氢溢流难以发生,消耗的强酸活性中心不能及时补充,使催化活性下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号