首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agonists induce phosphorylation of m2 muscarinic receptors (mAChR) in several cell types. This phosphorylation correlates with desensitization. The mechanisms underlying mAChR phosphorylation have been investigated using several in vitro approaches. Protein kinase C phosphorylated the purified and reconstituted m2 mAChR to a stoichiometry of approximately 5 mols P/mol receptor; this phosphorylation resulted in the decreased ability of receptors to activate G-proteins. Although the phosphorylation by PKC was not modulated by agonist binding to the mAChR, heterotrimeric G-proteins were able to completely block the PKC-mediated effects. If significant receptor/G-protein coupling occurs in vivo, agonists would be required to promote dissociation of the G-proteins from the receptors and reveal the phosphorylation sites for PKC. Members of the G-protein coupled receptor kinase (GRK) family also phosphorylated the purified and reconstituted m2 mAChR. In contrast to PKC, the GRKs phosphorylated the m2 mAChR strictly in an agonist-dependent manner. GRK mediated phosphorylation perturbed receptor/G-protein coupling. In addition, phosphorylation allowed for arrestin binding to the m2 mAChR which should further contribute to desensitization. Using a new strategy that does not require purification and reconstitution of receptors for GRK studies, the m3 mAChR were revealed as substrates for the GRKs. For both the m2 and m3 receptor subtypes, the most effective kinases were GRK 2 and 3. Phosphorylation of the receptors by these enzymes was stimulated by low concentrations of G-proteins and by membrane phospholipids. Thus, multiple mechanisms involving protein phosphorylation appear to contribute to the overall process of mAChR desensitization.  相似文献   

2.
R M Richardson  M M Hosey 《Biochemistry》1990,29(37):8555-8561
The results of several studies have suggested that muscarinic cholinergic receptors (mAChR) may be regulated by multiple pathways involving phosphorylation of the receptors. Previous studies have demonstrated that chick heart mAChR are phosphorylated by the beta-adrenergic receptor kinase (beta-AR kinase) in an agonist-dependent manner, and it has been suggested that this process may be linked to receptor desensitization. In this work, we present evidence that protein kinase C can phosphorylate the purified, reconstituted chick heart mAChR and can modify the interaction of the receptors with GTP binding proteins (G-proteins) that couple the receptors to effectors. Phosphorylation of the mAChR with protein kinase C occurred to an extent of approximately 5 mol of P/mol of receptor. Neither the rate nor the extent of the protein kinase C mediated phosphorylation of mAChR was agonist-dependent. Under the conditions tested, the initial rate of phosphorylation of the mAChR by protein kinase C was significantly more rapid than that obtained with the beta-AR kinase. At equilibrium, phosphorylation of mAChR by protein kinase C and beta-AR kinase was partially additive. The functional effects of protein kinase C mediated phosphorylation of the mAChR were assessed by comparing the abilities of purified G-proteins (Gi and Go) to reconstitute high-affinity agonist binding to phosphorylated and nonphosphorylated receptors. A significantly larger percentage of the receptors phosphorylated with protein kinase C exhibited G-protein-dependent high-affinity agonist binding, suggesting that phosphorylation of the receptors by protein kinase C modulates receptor function in a positive manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D R Brandt  E M Ross 《Biochemistry》1986,25(22):7036-7041
The effects of Al3+ and F- on the catecholamine-stimulated GTPase cycle were studied by using reconstituted phospholipid vesicles that contained purified beta-adrenergic receptor and the stimulatory GTP-binding protein of the adenylate cyclase system, Gs. Al3+/F- activated reconstituted Gs to levels previously reported for detergent-solubilized, purified Gs, although both activation and deactivation were faster in the reconstituted preparation. Under these conditions, Al3+/F- did not inhibit by more than 15% the beta-adrenergic agonist-stimulated GTPase activity of the vesicles nor did it significantly inhibit the rates of GTP binding, GTP hydrolysis, or GDP release. When Mg2+ (50 mM) was used instead of agonist to promote GTP hydrolysis in the receptor-Gs vesicles, Al3+/F- was found to inhibit GTP gamma S binding, GDP release, and steady-state GTPase activity to unstimulated levels. These data can be interpreted as indicating that the receptor catalyzes nucleotide exchange by Gs faster or more efficiently than does Mg2+.  相似文献   

4.
A1 adenosine receptors and associated guanine nucleotide-binding proteins (G proteins) were purified from bovine cerebral cortex by affinity chromatography (Munshi, R., and Linden, J. (1989) J. Biol. Chem. 264, 14853-14859). In this study we have identified the pertussis toxin-sensitive G protein subunits that co-purify with A1 adenosine receptors by immunoblotting with specific antipeptide antisera. Gi alpha 1, Gi alpha 2, Go alpha, G beta 35, and G beta 36 were detected. Of the total [35S]guanosine 5'-O-(3-thio)triphosphate [( 35S]GTP gamma S) binding sites, Gi alpha 1 and Go alpha each accounted for greater than 37% whereas Gi alpha 2 comprised less than 13%. G beta 35 was found in excess over G beta 36. Low molecular mass (21-25 kDa) GTP-binding proteins were not detected. We also examined the characteristics of purified receptors and various purified bovine brain G proteins reconstituted into phospholipid vesicles. All three alpha-subunits restored GTP gamma S-sensitive high affinity binding of the agonist 125I-aminobenzyladenosine to a fraction (25%) of reconstituted receptors with a selectivity order of Gi2 greater than Go greater than or equal to Gi1 (ED50 values of G proteins measured as fold excess over the receptor concentration were 4.7 +/- 1.2, 24 +/- 5, and 34 +/- 7, respectively). Furthermore, receptors occupied with the agonist R-phenylisopropyladenosine catalytically increased the rate of binding of [35S]GTP gamma S to reconstituted G proteins by 6.5-8.5-fold. These results suggest that A1 adenosine receptors couple indiscriminately to pertussis toxin-sensitive G proteins.  相似文献   

5.
The human m1 (hm1) and m2 (hm2) muscarinic cholinergic receptors (mAChR) expressed in Sf9 insect cells using recombinant baculovirus were tested for their ability to undergo agonist-dependent phosphorylation and desensitization. The muscarinic agonist carbachol induced phosphorylation of the hm2 mAChR in the Sf9 cells incubated with 32P(i) to an extent of 4-5 mol of phosphate/mol of receptor. In contrast, no phosphorylation of the hm1 mAChR was observed. The hm2 mAChR stimulated [35S]GTP gamma S binding to, and GTPase activity of, the insect cell G-proteins. These receptor-mediated activities were reduced by 50% in membranes prepared from agonist-treated cells compared to control, suggesting that the agonist-induced phosphorylation of the hm2 mAChR resulted in desensitization of the receptors. No role for protein kinase C or cyclic nucleotide-dependent kinases in receptor phosphorylation and desensitization was suggested from studies using agents known to modulate the activity of these enzymes. However, pertussis toxin was found to completely eliminate the interaction of the hm2 receptors with the insect cell G-proteins, but did not perturb the ability of carbachol to induce agonist-dependent phosphorylation of the receptors. These results suggested that G-proteins and/or G-protein-activated signalling were not necessary for the agonist-induced phosphorylation of the receptors. Overall, the data indicated that the human m2 (but not the human m1) mAChR expressed in Sf9 insect cells undergo phosphorylation and desensitization in an agonist-dependent, G-protein-independent fashion by an endogenous insect cell kinase. The results demonstrated that a human G-protein-linked receptor is regulated in insect cells in a manner that is similar to that involving members of the G-protein receptor-kinase family.  相似文献   

6.
Dopaminergic inhibition of prolactin release from the anterior pituitary may be mediated through both the adenylate cyclase and Ca2+ mobilization/phosphoinositide pathways. The D2-dopamine receptor of the bovine anterior pituitary has been partially purified by affinity chromatography on CMOS-Sepharose (immobilized carboxymethyleneoximinospiperone). Reinsertion of these partially purified receptor preparations into phospholipid vesicles reconstituted guanine nucleotide-sensitive high affinity agonist binding, agonist-promoted GTPase and 35S-labeled guanosine 5'-O-(thiotriphosphate) [( 35S]GTP gamma S) binding activity in these preparations. Pertussis toxin treatment of the purified receptor preparation abolished agonist-stimulated GTPase and guanine nucleotide-sensitive high affinity agonist binding. These observations suggest that the receptor copurifies with an endogenous, pertussis toxin-sensitive guanine nucleotide binding protein (N). [32P]ADP-ribosylation of affinity-purified D2 receptor preparations by pertussis toxin revealed the presence of a substrate of Mr 39,000-40,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Peptide maps generated using elastase of the [32P]ADP-ribosylated endogenous N protein, transducin, and Ni and No from brain revealed similarities but not identity between the endogenous pituitary N protein and brain Ni and No. Immunoblotting of the partially purified D2 receptor preparations showed an Mr 39,000-40,000 band with an Ni-specific antiserum raised against a synthetic peptide, and with RV3, an No-specific anti-serum, but not with CW6, an antiserum strongly reactive with brain Ni. Several lines of evidence indicate that endogenous pituitary N protein is functionally coupled to the D2 receptor. As measured by [35S]GTP gamma S binding, ratios of 0.2-0.6 mol N protein/mol receptor were observed. Association of N protein with the D2 receptor was increased by agonist pretreatment and decreased by guanine nucleotides. These results suggest that No and/or a form of Ni distinct from the Mr 41,000 pertussis toxin substrate (Ni) is the predominant N protein functionally coupled with the D2-dopamine receptor of anterior pituitary.  相似文献   

7.
Reconstitution of high-affinity agonist binding at the beta2-adrenoceptor (beta2AR) expressed in Sf9 insect cells requires a large excess of the stimulatory G-protein of adenylyl cyclase, Gsalpha, relative to receptor [R. Seifert, T. W. Lee, V. T. Lam & B. K. Kobilka, (1998) Eur. J. Biochem. 255, 369-382]. In a fusion protein of the beta2AR and Gsalpha (beta2AR-Gsalpha), which has only a 1 : 1 stoichiometry of receptor and G-protein, high-affinity agonist binding and agonist-stimulated GTP hydrolysis, guanosine 5'-O-(3-thiotriphosphate) (GTP[S]) binding and adenylyl cyclase (AC) activation are more efficient than in the nonfused coexpression system. In order to analyze the stability of the receptor/G-protein interaction, we constructed a fusion protein with a thrombin-cleavage site between beta2AR and Gsalpha (beta2AR-TS-Gsalpha). beta2AR-TS-Gsalpha efficiently reconstituted high-affinity agonist binding, agonist-stimulated GTP hydrolysis, GTP[S] binding and AC activation. Thrombin cleaves approximately 70% of beta2AR-TS-Gsalpha molecules in Sf9 membranes. Thrombin cleavage did not impair high-affinity agonist binding and GTP[S] binding but strongly reduced ligand-regulated GTPase activity and AC activity. We conclude that fusion of the beta2AR to Gsalpha promotes tight physical association of the two partners and that this association remains stable for a single activation/deactivation cycle even after cleavage of the link between the receptor and G-protein. Dilution of Gsalpha in the membrane and release of activated Gsalpha into the cytosol can both prevent cleaved beta2AR-TS-Gsalpha from undergoing multiple activation/deactivation cycles.  相似文献   

8.
K Shiozaki  T Haga 《Biochemistry》1992,31(43):10634-10642
Muscarinic acetylcholine receptors (mAChR) purified from porcine atrium were reconstituted into lipid vesicles with GTP-binding regulatory proteins (G proteins, Gi, Go, or Gn) purified from porcine cerebrum. Apparent affinities of the reconstituted mAChR and G proteins for carbachol and GDP, respectively, were estimated from the effects of these ligands on the binding of [3H]-L-quinuclidinyl benzilate ([3H]QNB) to mAChR and [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) to G proteins in the presence of different concentrations of MgCl2. A total of 30-35% of reconstituted mAChRs exhibited low affinity for carbamylcholine, irrespective of the presence or absence of guanine nucleotides, and the remainder of the mAChRs showed high affinities for carbamylcholine in the absence of GTP or GDP and a low affinity in their presence. The affinity for carbamylcholine in the absence of guanine nucleotides, but not in their presence, increased with increases in MgCl2 concentration. Apparent Kd's for carbamylcholine were estimated to be approximately 100 microM in the presence of guanine nucleotides, 1.5 microM in the absence of guanine nucleotide and Mg2+ (< 0.1 microM), and 0.1 microM in the absence of guanine nucleotide and the presence of MgCl2 (10 mM). These results indicate that mAChRs may assume at least three different conformations that are characterized by different affinities for agonists. Furthermore, the data suggest that MgCl2 is not necessary for the formation of the mAChR-G protein complex, but can induce a conformational change in the complex. On the other hand, the presence of MgCl2 was necessary for carbamylcholine to influence the binding of guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The GTP binding regulatory protein (Ni involved in adenylate cyclase inhibition was purified from rat brain and reconstituted, together with muscarinic cholinergic receptors purified from porcine brain, into phospholipid vesicles. Guanosine 5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding and GTP hydrolyzing activities of reconstituted Ni were stimulated by the addition of a muscarinic agonist, carbachol. The effect of carbachol was to increase the Vmax values of these activities, but the Km values were also increased slightly in most cases. Carbachol bound to vesicles with the same order of magnitude of Km as that for stimulation of GTPase. The affinity of this binding was reduced by GTP gamma S, indicating that the high-affinity receptor-Ni complex was formed in a GTP-dependent manner in reconstituted vesicles. Incubation of Ni with NAD and islet-activating protein (IAP), pertussis toxin, caused ADP-ribosylation of the alpha-subunit of Ni. The criteria for the receptor-Ni interaction, i.e. carbachol stimulation of the activities of Ni and the GTP gamma S effect on carbachol binding, were no longer observed, when this IAP-treated Ni, instead of the nontreated Ni, was reconstituted into vesicles, though there was no difference between IAP-treated and nontreated Ni in their basal activities observable without carbachol. No, the protein with a character very similar to Ni in rat brain, was also coupled to muscarinic receptors when they were reconstituted into vesicles under the same conditions. Thus, GTP-binding proteins serving as the substrate of IAP-catalyzed ADP-ribosylation are capable of interaction functionally with muscarinic receptors in phospholipid vesicles.  相似文献   

10.
Purified muscarinic receptors (0.5-10 nmol of L-[3H]quinuclidinyl benzilate-binding sites/mg of protein) from bovine brain and the GTP-dependent regulatory protein, Go, were reconstituted with a lipid mixture of phosphatidylcholine and cholesterol. Essentially all of the receptors could interact with Go as evinced by increases in affinity for agonist as large as 800-fold. Both the alpha and beta gamma subunits of Go were required for this effect. Similarly, both subunits were required for the stimulation of guanine nucleotide exchange by agonists. This latter action of the receptor on Go was catalytic and potentiated markedly by prior treatment with dithiothreitol. Initially, agonist stimulation of association of GTP and guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to Go was small and variable due to high basal rates. Prior addition of excess GDP inhibited the basal rate of exchange but allowed stimulation by agonists. Under these conditions, oxotremorine stimulated the rates of association of GTP gamma S up to 10-fold. This selective effect was not mimicked by GTP which inhibited both the basal and hormone-dependent rates. Direct examination of the association of GTP and GDP to Go demonstrated that agonist caused either stimulation or marked inhibition, respectively. These results indicate that receptors stimulate guanine nucleotide exchange on G proteins by both increasing the rates of dissociation of nucleotides and altering their relative affinities such that binding of GTP becomes highly favored over GDP. This would ensure the activation of G proteins by receptors in the presence of both nucleotides.  相似文献   

11.
The selectivity of D2 dopamine receptor-guanine nucleotide-binding protein (G protein) coupling was studied by reconstitution techniques utilizing purified D2 dopamine receptors from bovine anterior pituitary and resolved G proteins from bovine brain, bovine pituitary, and human erythrocyte. Titration of a fixed receptor concentration with varying G protein concentrations revealed two aspects of receptor-G protein coupling. First, Gi2 appeared to couple selectively with the D2 receptor with approximately 10-fold higher affinity than any other tested Gi subtype. Second, the G proteins differed in the maximal receptor-mediated agonist stimulation of the intrinsic GTPase activity. Gi2 appeared to be maximally stimulated by agonist-receptor complex with turnover numbers of approximately 2 min-1. The other Gi subtypes, Gi1 and Gi3, could be only partially activated, resulting in maximal rates of GTPase of approximately 1 min-1. Agonist-stimulated GTPase activity was not detected in preparations containing Go from bovine brain. The differences in maximal agonist-stimulated GTPase rates observed among the Gi subtypes could be explained by differences in agonist-promoted guanyl nucleotide exchange. Both guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding and GDP release parameters were enhanced 2-fold for the Gi2 subtype over the other Gi subtypes. These results suggest that even though several types of pertussis toxin substrate may exist in most tissues, a receptor may interact discretely with G proteins, thereby dictating signal transduction mechanisms.  相似文献   

12.
Muscarinic acetylcholine receptors purified from porcine brain were reconstituted with two kinds of GTP-binding proteins (Gi and Go). The binding of agonists was affected by guanine nucleotides when the receptor was reconstituted with either Gi or Go, but not in the absence of one of the GTP-binding proteins. The displacement curves with agonists for the [3H]quinuclidinyl benzylate [( 3H]QNB) binding were explained by assuming there are two sites with different affinities for a given agonist. The proportion of the high affinity site increased with increasing concentrations of the GTP-binding proteins, and the maximum value represented 50-70% of the total [3H]QNB-binding sites. Reconstitution of the receptor with both Gi and Go did not increase the proportion any further. These results indicate that Gi and Go interact with the same site, which rules out the possibility that there are two kinds of muscarinic receptors, one interacting with Gi and the other with Go. GDP as well as GTP decreased the affinity for the agonists of the muscarinic receptors reconstituted with Gi or Go. The conversion of GDP to GTP during the incubation was less than 1%, indicating that the effect of GDP is not due to its conversion to GTP, and that the binding of either GTP or GDP with the GTP-binding proteins suppresses their interaction with the receptor.  相似文献   

13.
Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity   总被引:14,自引:0,他引:14  
beta-Adrenergic receptors were partially purified from turkey erythrocyte membranes by alprenolol-agarose chromatography to 0.25-2 nmol/mg of protein, and the stimulatory guanosine 5'-triphosphate (GTP) binding protein of adenylate cyclase (Gs) was purified from rabbit liver. These proteins were reconstituted into phospholipid vesicles by addition of phospholipids and removal of detergent by gel filtration. This preparation hydrolyzes GTP to guanosine 5'-diphosphate (GDP) plus inorganic phosphate (Pi) in response to beta-adrenergic agonists. The initial rate of isoproterenol-stimulated hydrolysis is approximately 1 mol of GTP hydrolyzed min-1 X mol-1 of Gs. This low rate may be limited by the hormone-stimulated binding of substrate, since it is roughly equal to the rate of binding of the GTP analogue guanosine 5'-O-(3-[35S] thiotriphosphate) [( 35S]GTP gamma S) to Gs in the vesicles. Activity in the absence of agonist, or in the presence of agonist plus a beta-adrenergic antagonist, is 8-25% of the hormone-stimulated activity. Guanosinetriphosphatase (GTPase) is not saturated at 10 microM GTP, and the response to GTP is formally consistent either with the existence of multiple Km's or of a separate stimulatory site for GTP. The GTPase activity of Gs in vesicles is also stimulated by 50 mM MgCl2 in the presence or absence of receptor. Significant GTPase activity is not observed with Lubrol-solubilized Gs, although [35S]-GTP gamma S binding is increased by Lubrol solubilization.  相似文献   

14.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
L Y Li  Z M Zhang  Y F Su  W D Watkins  K J Chang 《Life sciences》1992,51(15):1177-1185
Opioid receptor was solubilized from rat brain membranes with a mixture of the detergents CHAPS and digitonin in the presence of protease inhibitors and 1 M NaCl. The solubilized receptor bound mu-opioid agonists and antagonists with affinities similar to those of native membrane receptor. The affinity of solubilized receptor for the agonist PL017 was greatly reduced by GTP gamma S, suggesting the receptor is still associated with G-protein. The solubilized material was passed through an opioid antagonist (10cd) affinity column and a wheat germ agglutinin column, set up in series, to obtain a partially purified receptor preparation. This partially purified material bound mu-agonist with low affinity and the binding affinity was no longer affected by GTP gamma S. The partially purified receptor was further purified by repeating the affinity and lectin chromatography with smaller size column. Binding of opioid antagonist [3H]diprenorphine to the partially or purified receptors was dependent upon the presence of sodium ions. The purified receptor showed saturable and stereospecific binding for opioid ligands, was predominantly of the mu-type, and exhibited as a diffuse band with a medium molecular mass of 62 kD upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The average specific binding activity of the purified receptor was 18.8 +/- 2.3 pmol/micrograms protein, a value close to the theoretical estimation.  相似文献   

16.
In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.  相似文献   

17.
The G-protein involved in alpha 1-adrenergic receptor signaling was identified using two different approaches. First, purified rat liver membranes were incubated with [alpha-32P]GTP in the absence or presence of the adrenergic agonist (-)-epinephrine, or in the presence of GTP. After UV irradiation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography, covalent labeling of a number of proteins was apparent and could be blocked by unlabeled GTP. In the preparation treated with (-)-epinephrine alone, labeling of a 74-kDa species was markedly enhanced. Enhanced labeling of 40-50-kDa species was also observed. Labeling of the 74-kDa protein was also evident in similarly treated membranes prepared from FRTL-5 thyroid cells, which contain abundant alpha 1-adrenergic receptors, but not in those prepared from turkey erythrocytes or NIH 3T3 fibroblasts, which are essentially devoid of alpha 1-receptors. Second, alpha 1-agonist-receptor-G-protein ternary complex formation was induced by incubating purified rat liver membranes with (-)-epinephrine. Rauwolscine (10(-7) M) and (+/-)-propranolol (10(-6) M) were included to prevent activation of alpha 2- and beta-adrenergic receptors by (-)-epinephrine. The ternary complex of hormone, receptor, and G-protein was solubilized, partially purified using heparin- and wheat germ agglutinin-agarose, and reconstituted into phospholipid vesicles. The vesicles displayed agonist-stimulated guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding that was blocked by phentolamine (10(-4) M). By contrast, stimulation of GTP gamma S binding was not evident when the vesicles were incubated with the beta-agonist, isoproterenol. Incubation of the vesicles with [alpha-32P]GTP or [alpha-32P]azido-GTP in the presence of (-)-epinephrine, followed by photolysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography, resulted in the covalent labeling of a 74-kDa protein. Labeling of this protein could be blocked by preincubation with phentolamine or unlabeled GTP. These findings provide direct evidence for the coupling of the alpha 1-adrenergic receptor to a previously uncharacterized G-protein (termed Gh), which has an apparent molecular mass of approximately 74 kDa.  相似文献   

18.
We have partially purified a protein kinase that phosphorylates muscarinic receptors (mAChR) in the presence of agonists and have shown that the phosphorylation is stimulated by the beta gamma subunits of the GTP binding protein Go (Haga, K., and Haga, T. (1990) FEBS Lett. 268, 43-47). We report here that rhodopsin is also phosphorylated in a light-dependent manner by the same kinase preparation and that beta gamma subunits derived from Gs, Gi, and Go stimulate the phosphorylation of both rhodopsin and mAChRs. The rhodopsin- and mAChR-phosphorylating activities were eluted in the same fractions using a purification procedure that is essentially the same as that used for the purification of beta-adrenergic receptor kinase (Benovic, J.L., Strasser, R.H., Caron, M.G., and Lefkowitz, R.J. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 2797-2801) and were inhibited by low concentrations of heparin, an inhibitor of beta-adrenergic receptor kinase, (IC50 = 15 nM), suggesting that both mAChR and rhodopsin are phosphorylated by the same or very similar kinase(s) belonging to the beta-adrenergic receptor kinase family. G protein beta gamma subunits increased the Vmax of the phosphorylation of rhodopsin 12-fold. Kinetic data were consistent with the assumptions that the protein kinase (mAChR kinase) binds rhodopsin and beta gamma subunits in a random order and that the reaction rate is proportional to concentration of the ternary complex. By contrast, the light-dependent phosphorylation of rhodopsin by the rhodopsin kinase was not stimulated by the beta gamma subunits. These results indicate that beta gamma subunits may interact with and activate the mAChR kinase but not rhodopsin kinase and suggest that the beta gamma subunit of G proteins may take part in the desensitization of G protein-linked receptors.  相似文献   

19.
The binding of substance P (SP) to receptors in peripheral tissues as well as in the CNS is subject to regulation by guanine nucleotides. In this report, we provide direct evidence that this effect is mediated by a guanine nucleotide-binding regulatory protein (G-protein) that is required for high-affinity binding of SP to its receptor. Rat submaxillary gland membranes bind a conjugate of SP and 125I-labeled Bolton-Hunter reagent (125I-BHSP) with high affinity (KD = 1.2 +/- 0.4 X 10(-9) M) and sensitivity to guanine nucleotide inhibition. Treatment of the membranes with alkaline buffer (pH 11.5) causes a loss of the high-affinity, GTP-sensitive binding of 125I-BHSP and a parallel loss of [35S]guanosine 5'-(3-O-thio)triphosphate ([35S]GTP gamma S) binding activity. Addition of purified G-proteins from bovine brain to the alkaline-treated membranes restores high-affinity 125I-BHSP binding. Reconstitution is maximal when the G-proteins are incorporated into the alkaline-treated membranes at a 30-fold stoichiometric excess of GTP gamma S binding sites over SP binding sites. Both Go (a pertussis toxin-sensitive G-protein having a 39,000-dalton alpha-subunit) and Gi (the G-protein that mediates inhibition of adenylate cyclase) appear to be equally effective, whereas the isolated alpha-subunit of Go is without effect. The effects of added G-proteins are specifically reversed by guanine nucleotides over the same range of nucleotide concentrations that decreases high-affinity binding of 125I-BHSP to native membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Treatment of beta-adrenergic receptor with dithiothreitol (DTT) or other thiol compounds caused its functional activation in the presence or absence of agonist ligands. Such activation was observed in reconstituted unilamellar phospholipid vesicles that contained beta-adrenergic receptors, purified to greater than or equal to 95% homogeneity from turkey erythrocyte plasma membranes, and the stimulatory GTP-binding protein of the adenylate cyclase system (Gs) purified from rabbit liver. Incubation of the vesicles with 2-10 mM DTT at 0 degrees C for 1 h increased the rate (4-5-fold) and the extent (3-4-fold) of activation of Gs by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding, an effect about equivalent to the addition of beta-adrenergic agonists. Treatment with DTT also markedly potentiated the ability of agonists to stimulate GTP gamma S binding, increasing the initial rate about 10-fold. DTT treatment was as effective as agonist in stimulating GTPase activity, and maximal stimulation was obtained when DTT-treated vesicles were assayed in the presence of agonist. Other thiol compounds produced effects similar to those of DTT but were at least 10-fold less potent. Stimulation of GTP gamma S binding or GTPase activity required active receptor, and treatment of the receptor with DTT prior to reconstitution also increased its efficacy. There was no effect of DTT on Gs alone. Thus, the site of action of DTT appears to be on the beta-adrenergic receptor itself, and the reduction of disulfides and the binding of agonist act synergistically to activate the receptor. DTT treatment made the receptor more labile to thermal denaturation. Inclusion of cholesterol or cholesteryl-hemisuccinate (5-25%) in the vesicles protected the reduced receptor against such denaturation and enhanced its recovery during reconstitution. No effect of cholesterol or cholesteryl-hemisuccinate was observed on the stability of the nonreduced receptor, which was comparable to that observed in native membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号