首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We study the thermal properties of amorphous TiO2 thin films of various thicknesses t, grown by atomic layer deposition. The thermo-optic coefficient dn/dT and the temperature coefficient dρ/dT of film density ρ are determined from ellipsometric data in wavelength range 380 < λ < 1800 nm with the Cauchy model and the Lorentz-Lorenz relation. It is found that dn/dT exhibits negative values for films with t < 150 nm and positive values for thicker films, while no significant changes in the two coefficients take place if t < 200 nm. A qualitative physical explanation based on porosity of the thin films is suggested. Films with t = 60 nm are illustrated in detail at λ = 640 nm: the room-temperature values of the coefficients are found to be dn/dT = − 3.1 × 10− 5 °C− 1 and dρ/dT = − 4.8 × 10− 5g cm− 3° C− 1.  相似文献   

2.
TiO2 thin films were prepared by DC reactive magnetron sputtering in a mixture of oxygen and argon on glass and oxidized silicon substrates. The effect of post-deposition annealing (300 °C, 500 °C and 700 °C for 8 h in air) on the structural and morphological properties of TiO2 thin films is presented. In addition, the effect of Pt surface modification (1, 3 and 5 nm) on hydrogen sensing was studied. XRD patterns have shown that in the range of annealing temperatures from 300 °C to 500 °C crystallization starts and the thin film structure changes from amorphous to polycrystalline (anatase phase). In the case of samples on glass substrate, optical transmittance spectra were recorded. TiO2 thin films were tested as sensors of hydrogen at concentrations 10,000-1000 ppm and operating temperatures within the 180-200 °C range. The samples with 1 nm and in particular with 3 nm of Pt on the surface responded to hydrogen fast and with high sensitivity.  相似文献   

3.
X. Zhang 《Thin solid films》2009,518(5):1522-1526
A series of zirconium silicon nitride (Zr1−xSixN) thin films were grown on r-plane sapphire substrates using reactive RF magnetron co-sputtering of Zr and Si targets in a N2/Ar plasma. X-ray diffraction pole figure analysis, X-ray reflectivity, X-ray photoelectron spectroscopy (XPS), optical microscopy, and optical absorption spectroscopy were used to characterize the film stoichiometries and structures after growth at 200 °C and post-deposition annealing up to 1000 °C in ultra-high vacuum. The atomically clean r-plane sapphire substrates induce high quality (100) heteroepitaxy of ZrN films rather than the (111) orientation observed on steel and silicon substrates, but the addition of Si yields amorphous films at the 200 °C growth temperature. After the annealing treatment, films with Si content x < 0.15 have compressive stress and crystallize into a polycrystalline structure with (100) fiber texture. For x > 0.15, the films are amorphous and remain so even after ultra-high vacuum annealing at 1000 °C. XPS spectra indicate that the bonding changes from covalent to more ionic in character as Si―N bonds form instead of Zr―N bonds. X-ray reflectivity, atomic force microscopy (AFM) and optical microscopy data reveal that after post-deposition annealing the 100 nm thick films have an average roughness < 2 nm, except for Si content near x = 0.15 corresponding to where the film becomes amorphous rather than being polycrystalline. At this stoichiometry, evidence was found for regions of film delamination and hillock formation, which is presumably driven by strain at the interface between the film and sapphire substrate. UV-visible absorption spectra also were found to depend on the film stoichiometry. For the amorphous Si-rich films (x > 0.15), the optical band gap increases with Si content, whereas for Zr-rich films (x < 0.15), there is no band gap and the films are highly conductive.  相似文献   

4.
H. Akazawa  M. Shimada 《Vacuum》2006,80(7):704-707
We investigated the orientation of domains in LiNbO3 (LN) thin films grown by electron-cyclotron resonance plasma sputtering on TiN films with various crystalline states. Deposition at 400 °C on an amorphous TiN produced partially crystallized and apparently c-axis-oriented LN. When TiN crystallized at 460 °C to become polycrystalline grains, the roughened surface randomized the orientation of LN. At 600 °C, the reaction of TiN with oxygen atoms supplied from the plasma created a TiOx layer. Rapid thermal annealing of amorphous LN films at 460 °C was the best solution for removing these disorientation factors, but annealing of amorphous LN on poly-crystalline TiN yielded no c-axis-oriented domains.  相似文献   

5.
Indium zinc oxide (IZO) films were deposited as a function of the deposition temperature using a sintered indium zinc oxide target (In2O3:ZnO = 90:10 wt.%) by direct current (DC) magnetron reactive sputtering method. The influence of the substrate temperature on the microstructure, surface roughness and electrical properties was studied. With increasing the temperature up to 200 °C, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about 3.4 × 10− 4 Ω cm. Change of structural properties according to the deposition temperature was also observed with X-ray diffraction patterns, transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. IZO films deposited above 300 °C showed polycrystalline phases evolved on the amorphous IZO layer. Very flat surface roughness could be obtained at lower than 200 °C of the substrate temperature, while surface roughness of the films was increased due to the formation of grains over 300 °C. Consequently, high quality IZO films could be prepared by DC magnetron sputtering with O2/Ar of 0.03 and deposition temperature in range of 150-200 °C; a specific resistivity of 3.4 × 10− 4 Ω cm, and the values of peak to valley roughness and root-mean-square roughness are less than 4 nm and 0.5 nm, respectively.  相似文献   

6.
Optical property and crystallinity of Ge90Te10 films prepared by electron beam evaporation have been studied. The films grown at different substrate temperatures (Ts) and deposition rates (R) have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and spectroscopic ellipsometry. The polycrystalline film was obtained at Ts = 300 °C, while the amorphous film was obtained when Ts ≦ 200 °C. However, the film showed the columnar structure when Ts ≦ 100 °C. It was found that Ts had the stronger effect on the crystallinity of the film rather than R. The optical constant in the infrared region was determined. All the film exhibited no absorption, but the refractive index was varied with the change of Ts and R. The relationship between optical constant, the film structure and the deposition parameters were also discussed. In addition, the optimum deposition condition of Ge90Te10 film was found.  相似文献   

7.
The a-SiC:H films were produced by remote hydrogen plasma chemical vapor deposition (RP-CVD) from bis(dimethylsilyl)ethane as a novel single-source precursor. The effect of substrate temperature (TS) on the kinetics of RP-CVD, chemical composition, structure, surface morphology, and properties of resulting films (density, refractive index, photoluminescence, hardness, elasticity, and resistance to wear) is reported. The TS dependence of film growth rate implies that RP-CVD is an adsorption controlled process. The increase of TS from 30 °C to 400 °C causes the elimination of organic moieties from the film and the formation of SiC network structure. The relationships between the relative integrated intensity of SiC IR band and film properties were determined. The films deposited at TS = 300 °C appear to be very hard materials exhibiting small surface roughness and low intensity of blue photoluminescence (PL). They seem to be suitable protective coatings for metals to increase their wear strength.  相似文献   

8.
We report the structural and optical properties of nanocrystalline thin films of vanadium oxide prepared via evaporation technique on amorphous glass substrates. The crystallinity of the films was studied using X-ray diffraction and surface morphology of the films was studied using scanning electron microscopy and atomic force microscopy. Deposition temperature was found to have a great impact on the optical and structural properties of these films. The films deposited at room temperature show homogeneous, uniform and smooth texture but were amorphous in nature. These films remain amorphous even after postannealing at 300 °C. On the other hand the films deposited at substrate temperature TS > 200 °C were well textured and c-axis oriented with good crystalline properties. Moreover colour of the films changes from pale yellow to light brown to black corresponding to deposition at room temperature, 300 °C and 500 °C respectively. The investigation revealed that nanocrystalline V2O5 films with preferred 001 orientation and with crystalline size of 17.67 nm can be grown with a layered structure onto amorphous glass substrates at temperature as low as 300 °C. The photograph of V2O5 films deposited at room temperature taken by scanning electron microscopy shows regular dot like features of nm size.  相似文献   

9.
Fluorinated hydroxyapatite coated titanium was investigated for application as implant coating for bone substitute materials in orthopaedics and dentistry. Pulsed laser deposition technique was used for films preparation. Fluorinated hydroxyapatite target composition, Ca10(PO4)6F1.37(OH)0.63, was maintained at 2 J/cm2 of laser fluence and 500-600 °C of the substrate temperature. Prepared films had a compact microstructure, composed of spherical micrometric-size aggregates. The average surface roughness resulted to be of 3 nm for the film grown at 500 °C and of 10 nm for that grown at 600 °C, showing that the temperature increase did not favour the growth of a more fine granulated surface. The films were polycrystalline with no preferential growth orientation. The films grown at 500-600 °C were about 8 μm thick and possessed a hardness of 12-13 GPa. Lower or higher substrate temperature provides the possibility to obtain coatings with different fine texture and roughness, thus tayloring them for various applications.  相似文献   

10.
Nanostructured tungsten (W) and tungsten trioxide (WO3) films were prepared by glancing angle deposition using pulsed direct current magnetron sputtering at room temperature with continuous substrate rotation. The chemical compositions of the nanostructured films were characterized by X-ray photoelectron spectroscopy, and the film structures and morphologies were investigated using X-ray diffraction and high resolution scanning electron microscopy. Both as-deposited and air annealed tungsten trioxide films exhibit nanostructured morphologies with an extremely high surface area, which may potentially increase the sensitivity of chemiresistive WO3 gas sensors. Metallic W nanorods formed by sputtering in a pure Ar plasma at room temperature crystallized into a predominantly simple cubic β-phase with <100> texture although evidence was found for other random grain orientations near the film/substrate interface. Subsequent annealing at 500 °C in air transformed the nanorods into polycrystalline triclinic/monoclinic WO3 structure and the nanorod morphology was retained. Substoichiometric WO3 films grown in an Ar/O2 plasma at room temperature had an amorphous structure and also exhibited nanorod morphology. Post-deposition annealing at 500 °C in air induced crystallization to a polycrystalline triclinic/monoclinic WO3 phase and also caused a morphological change from nanorods into a nanoporous network.  相似文献   

11.
A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 µm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a roll-to-roll DC magnetron reactive sputtering method. The water vapor transmission rate of the SiOx film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.5 cc/m2 day atm at 40 °C and 90% RH. As the transparent conductive thin film, amorphous indium zinc oxide was deposited on the SiOx by sputtering. The transmittance was 87% and the resistivity was 3.5 × 10− 4 ohm cm.  相似文献   

12.
BiFeO3 (BFO) films were grown on LaNiO3-coated Si substrate by a RF magnetron sputtering system at temperatures in the range of 300-700 °C. X-ray reflectivity and high-resolution diffraction measurements were employed to characterize the microstructure of these films. For a substrate temperature below 300 °C and at 700 °C only partially crystalline films and completely randomly polycrystalline films were grown, whereas highly (001)-orientated BFO film was obtained for a substrate temperature in the range of 400-600 °C. The crystalline quality of BFO thin films increase as the deposition temperature increase except for the film deposited at 700 °C. The fitted result from X-ray reflectivity curves show that the densities of the BFO films are slightly less than their bulk values. For the BFO films deposited at 300-600 °C, the higher the deposition temperature, the larger the remnant polarization and surface roughness of the films present.  相似文献   

13.
Anatase titanium dioxide (TiO2) thin films are prepared by DC reactive magnetron sputtering using Ti target as the source material. In this work argon and oxygen are used as sputtering and reactive gas respectively. DC power is used at 100 W per 1 h. The distance between the target and substrate is fixed at 4 cm. The glass substrate temperature value varies from room temperature to 400 °C. The crystalline structure of the films is determined by X-ray diffraction analysis. All the films deposited at temperatures lower than 300 °C were amorphous, whereas films obtained at higher temperature grew in crystalline anatase phase. Phase transition from amorphous to anatase is observed at 400 °C annealing temperature. Transmittances of the TiO2 thin films were measured using UV-visible NIR spectrophotometer. The direct and indirect optical band gap for room temperature and substrate temperature at 400 °C is found to be 3.50, 3.41 eV and 3.50, 3.54 eV respectively. The transmittance of TiO2 thin films is noted higher than 75%. A comparison among all the films obtained at room temperature showed a transmittance value higher for films obtained at substrate temperature of 400 °C. The morphology of the films and the identification of the surface chemical stoichiometry of the deposited film at 400 °C were studied respectively, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness and the grain size are measured using AFM.  相似文献   

14.
H.H. Zhang  Q.Y. Zhang 《Vacuum》2009,83(11):1311-2688
ZrO2 thin films were deposited onto Si wafers and glass slides by reactive rf magnetron sputtering with varying conditions of substrate temperature (Ts). Structural analysis was carried out using high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM). The scaling behavior of the AFM topographical profiles was analyzed using one-dimensional power spectral density method (1DPSD). Morphological and structural evolution of ZrO2 films have been studied in relation to Ts. With substrate temperatures ranging from RT to 550 °C, the structural transition of the films is a-ZrO2 (below 250 °C) → m-ZrO2 with a little a-ZrO2 (450 °C) → m-ZrO2 with a little t-ZrO2 (550 °C). The roughness exponent α is 1.53 ± 0.02, 1.04 ± 0.01, 1.06 ± 0.05, 1.20 ± 0.03 for ZrO2 thin films deposited at RT, 250 °C, 450 °C, and 550 °C, respectively. Quantitative surface characterization by spatially resolved 1DPSD analyses identified three different growth mechanisms of surface morphology for ZrO2 thin films deposited at RT, 250∼450 °C and 550 °C. The evolution and interactions of surface roughness and microstructure are discussed in terms of surface diffusion, grain growth, and flux shadowing mechanisms.  相似文献   

15.
A. Zalar  J. Kova?  B. Pra?ek  P. Panjan  M. ?eh 《Vacuum》2007,82(2):116-120
To study the ion sputtering of a layered structure with different layer densities and ion sputtering yields a trilayer structure of C-graphite(46 nm)/CrxCy(60 nm)/Cr(69 nm) was sputter deposited onto smooth silicon substrates. The ion sputtering rates of amorphous carbon, amorphous CrxCy and polycrystalline Cr were determined by means of Auger electron spectroscopy depth profiling as a function of the angle of incidence of two symmetrically inclined 1 keV Ar+ ion beams in the range between 22° and 82°. The sputtering rates were calculated from the known thicknesses of the layers and the sputtering times necessary to remove the individual layers. It was found that the sputtering rates of C-graphite, CrxCy carbide and Cr were strongly angle dependent. The experimental sputtering yields were in agreement with the theoretical results obtained by calculation of the transport of ions in solids, but the sputtering yields of C-graphite measured at ion incidence angles larger than 29° were smaller than the simulated ones.  相似文献   

16.
Reactive pulsed magnetron sputtering was used to produce conductive and transparent tin-doped indium oxide (ITO) films with low thickness inhomogeneity. Due to the parallel operation of two magnetrons, the deposition system allows in situ investigations of the plasma influence on the film properties. The distribution of the film resistivity, refractive index, structure and stoichiometry along the substrate are presented and related to the spatial distribution of the plasma flow escaping the magnetrons, and the substrate temperature. A higher plasma flow likely causes a localized relaxation of the distorted In-O bonds in amorphous phase which prevails in ITO films prepared at unheated substrates. This leads to a decrease of the film resistivity due to free electrons density and mobility enhancement. The free electron density increase is caused likely by generation of oxygen vacancies. Deposition on a heated substrate (Ts / Tm = 0.3) leads to a change of the film growth mode due to enhanced surface diffusion of the adatoms which results in a textured low resistivity film. This also causes significant improvements of the homogeneity of the film properties that is important for ITO applications.  相似文献   

17.
The coexistence of ultraviolet (UV) photoconductivity (PC) and room-temperature ferromagnetism (RTFM) is observed in polycrystalline ZnO thin films deposited by unbalanced magnetron sputtering under high oxygen pressure. A significant increase in PC (∼ 870% to 40 000%) is observed with increasing film thickness and the consequent structural disorder and film porosity. In contrast, the saturation magnetization (MS) at room temperature is found to decrease from 1.02 emu/g to 0.53 emu/g with increasing film thickness from 50 to 150 nm.  相似文献   

18.
FeCoNd thin film with thickness of 166 nm has been fabricated on silicon (1 1 1) substrates by magnetron co-sputtering and annealed for one hour under magnetic field at different temperatures (Ta) from 200 °C to 700 °C. The As-deposited and annealed FeCoNd film samples at Ta ≤ 500 °C were amorphous while the ones obtained at Ta ≥ 600 °C were crystallized. We found that the perpendicular anisotropy field gradually decreases as the annealing temperature increases from room temperature to 300 °C. A well induced in-plane uniaxial anisotropy is achieved at the annealing temperature between 400 and 600 °C. The variation of the dynamic magnetic properties of annealed FeCoNd films can be well explained by the Landau-Lifshitz equation with the variation of the anisotropy field re-distribution and the damping constant upon magnetic annealing. The magnetic annealing might be a powerful post treatment method for high frequency application of magnetic thin films.  相似文献   

19.
Y.M. Kang  J.H. Choi  P.K. Song 《Thin solid films》2010,518(11):3081-3668
Ce-doped indium tin oxide (ITO:Ce) films were deposited on flexible polyimide substrates by DC magnetron sputtering using ITO targets containing various CeO2 contents (CeO2 : 0, 0.5, 3.0, 4.0, 6.0 wt.%) at room temperature and post-annealed at 200 °C. The crystallinity of the ITO films decreased with increasing Ce content, and it led to a decrease in surface roughness. In addition, a relatively small change in resistance in dynamic stress mode was obtained for ITO:Ce films even after the annealing at high temperature (200 °C). The minimum resistivity of the amorphous ITO:Ce films was 3.96 × 10− 4 Ωcm, which was deposited using a 3.0 wt.% CeO2 doped ITO target. The amorphous ITO:Ce films not only have comparable electrical properties to the polycrystalline films but also have a crystallization temperature > 200 °C. In addition, the amorphous ITO:Ce film showed stable mechanical properties in the bended state.  相似文献   

20.
Fabrication of ZnS thin films having similar stoichiometry at different substrate temperatures (TS) e.g. 200 °C, 300 °C and 400 °C by means of RF magnetron sputtering method is presented. The films grown at TS of 200 °C are in cubic zinc-blende phase and textured along (111) plane. The films deposited at TS of 300 °C and 400 °C are in hexagonal wurtzite phase. The surface roughness and grain size of the films increase with increasing TS. The ultra-violet and visible absorption studies show that the bandgap of films can be tailored by varying TS, taking advantage of the structural transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号