首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
2.
The large T (LT) antigen encoded by SV40 virus is a multi-domain, multi-functional protein that can not only transform cells but can also function as an efficient molecular machine to unwind duplex DNA for DNA replication. Here we report our findings on the oligomeric forms, domain interactions, and ATPase and helicase activities of various LT constructs. For the LT constructs that hexamerize, only two oligomeric forms, hexameric and monomeric, were detected in the absence of ATP/ADP. However, the presence of ATP/ADP stabilizes LT in the hexameric form. The LT constructs lacking the N- and C-terminal domains, but still retaining hexamerization ability, have ATPase as well as helicase activities at a level comparable to the full-length LT, suggesting the importance of hexamerization for these activities. The domain structures and the possible interactions between different LT fragments were probed with limited protease (trypsin) digestion. Such protease digestion generated a distinct pattern in the presence and absence of ATP/ADP and Mg(2+). The most C-terminal fragment (residues 628-708, containing the host-range domain), which was thought to be completely unstructured, was somewhat trypsin-resistant despite the presence of multiple Arg and Lys, possibly due to a rather structured C terminus. Furthermore, the N- and C-terminal fragments cleaved by trypsin were associated with other parts of the molecule, suggesting the interdomain interactions for the fragments at both ends.  相似文献   

3.
The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1′, which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.  相似文献   

4.
Zhong N  Zhang S  Zou P  Chen J  Kang X  Li Z  Liang C  Jin C  Xia B 《Journal of virology》2008,82(9):4227-4234
The main protease (M(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. It was found that SARS-CoV M(pro) exists in solution as an equilibrium of both monomeric and dimeric forms, and the dimeric form is the enzymatically active form. However, the mechanism of SARS-CoV M(pro) dimerization, especially the roles of its N-terminal seven residues (N-finger) and its unique C-terminal domain in the dimerization, remain unclear. Here we report that the SARS-CoV M(pro) C-terminal domain alone (residues 187 to 306; M(pro)-C) is produced in Escherichia coli in both monomeric and dimeric forms, and no exchange could be observed between them at room temperature. The M(pro)-C dimer has a novel dimerization interface. Meanwhile, the N-finger deletion mutant of SARS-CoV M(pro) also exists as both a stable monomer and a stable dimer, and the dimer is formed through the same C-terminal-domain interaction as that in the M(pro)-C dimer. However, no C-terminal domain-mediated dimerization form can be detected for wild-type SARS-CoV M(pro). Our study results help to clarify previously published controversial claims about the role of the N-finger in SARS-CoV M(pro) dimerization. Apparently, without the N-finger, SARS-CoV M(pro) can no longer retain the active dimer structure; instead, it can form a new type of dimer which is inactive. Therefore, the N-finger of SARS-CoV M(pro) is not only critical for its dimerization but also essential for the enzyme to form the enzymatically active dimer.  相似文献   

5.
Unlike 3C protease, the severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CLpro) is only enzymatically active as a homodimer and its catalysis is under extensive regulation by the unique extra domain. Despite intense studies, two puzzles still remain: (i) how the dimer-monomer switch is controlled and (ii) why dimerization is absolutely required for catalysis. Here we report the monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 A. Detailed analysis reveals that Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimer to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 3(10)-helix from an active-site loop. Remarkably, dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis.  相似文献   

6.
To study how oligomerization may contribute to the thermostability of archaeon proteins, we focused on a hexameric protein, protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii (StoPIMT). The crystal structure shows that StoPIMT has a distinctive hexameric structure composed of monomers consisting of two domains: an S-adenosylmethionine-dependent methyltransferase fold domain and a C-terminal alpha-helical domain. The hexameric structure includes three interfacial contact regions: major, minor, and coiled-coil. Several C-terminal deletion mutants were constructed and characterized. The hexameric structure and thermostability were retained when the C-terminal alpha-helical domain (Tyr(206)-Thr(231)) was deleted, suggesting that oligomerization via coiled-coil association using the C-terminal alpha-helical domains did not contribute critically to hexamerization or to the increased thermostability of the protein. Deletion of three additional residues located in the major contact region, Tyr(203)-Asp(204)-Asp(205), led to a significant decrease in hexamer stability and chemico/thermostability. Although replacement of Thr(146) and Asp(204), which form two hydrogen bonds in the interface in the major contact region, with Ala did not affect hexamer formation, these mutations led to a significant decrease in thermostability, suggesting that two residues in the major contact region make significant contributions to the increase in stability of the protein via hexamerization. These results suggest that cooperative hexamerization occurs via interactions of "hot spot" residues and that a couple of interfacial hot spot residues are responsible for enhancing thermostability via oligomerization.  相似文献   

7.
The matrix protein VP40 from Ebola virus is targeted to the plasma membrane, where it is thought to induce assembly and budding of virions through its association with the lipid bilayer. Ebola virus VP40 is expressed as a monomeric molecule in solution, consisting of two loosely associated domains. Here we show that a C-terminal truncation of seven residues destabilizes the monomeric closed conformation and induces spontaneous hexamerization in solution, as indicated by chemical cross-linking and electron microscopy. Three-dimensional reconstruction of electron microscopy images shows ring-like structures consisting of the N-terminal domain along with evidence for flexibly attached C-terminal domains. In vitro destabilization of the monomer by urea treatment results in similar hexameric molecules in solution. In addition, we demonstrate that membrane association of wild-type VP40 also induces the conformational switch from monomeric to hexameric molecules that may form the building blocks for initiation of virus assembly and budding. Such a conformational change induced by bilayer targeting may be a common feature of many viral matrix proteins and its potential inhibition may result in new anti-viral therapies.  相似文献   

8.
The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings by showing that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in the hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.  相似文献   

9.
We have isolated a full-length cDNA encoding an acetylcholinesterase secreted by the nematode parasite Nippostrongylus brasiliensis. The predicted protein is truncated in comparison with acetylcholinesterases from other organisms such that the carboxyl terminus aligns closely to the end of the catalytic domain of the vertebrate enzymes. The residues in the catalytic triad are conserved, as are the six cysteines which form the three intramolecular disulfide bonds. Three of the fourteen aromatic residues which line the active site gorge in the Torpedo enzyme are substituted by nonaromatic residues, corresponding to Tyr-70 (Thr), Trp-279 (Asn), and Phe-288 (Met). High level expression was obtained via secretion from Pichia pastoris. The purified enzyme behaved as a monomeric hydrophilic species. Although of invertebrate origin and possessing the above substitutions in the active site gorge residues, the enzyme efficiently hydrolyzed acetylthiocholine and showed minimal activity against butyrylthiocholine. It displayed excess substrate inhibition with acetylthiocholine at concentrations over 2. 5 mM and was highly sensitive to both active site and "peripheral" site inhibitors. Northern blot analysis indicated a progressive increase in mRNA for AChE B in parasites isolated from 6 days postinfection.  相似文献   

10.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for “middle of the SARS-unique domain”) in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1"-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.  相似文献   

14.
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.  相似文献   

15.
Genetic selection provides an effective way to obtain active catalysts from a diverse population of protein variants. We have used this tool to investigate the role of loop sequences in determining the quaternary structure of a domain-swapped enzyme. By inserting random loops of four to seven residues into a dimeric chorismate mutase and selecting for functional variants by genetic complementation, we have obtained and characterized both monomeric and hexameric enzymes that retain considerable catalytic activity. The low percentage of active proteins recovered from these selection experiments indicates that relatively few loop sequences permit a change in quaternary structure without affecting active site structure. The results of our experiments suggest further that protein stability can be an important driving force in the evolution of oligomeric proteins.  相似文献   

16.
17.
18.
We have built a homology model of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli based on the crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. The resulting model of the hexameric ring of the ATP-bound form of the AAA ATPase suggests a plausible mechanism of ATP binding and hydrolysis, in which invariant residues of Walker motifs A and B and the second region of homology, characteristic of the AAA ATPases, play key roles. The importance of these invariant residues was confirmed by site-directed mutagenesis. Further modelling suggested a mechanism by which ATP hydrolysis alters the conformation of the loop forming the central hole of the hexameric ring. It is proposed that unfolded polypeptides are translocated through the central hole into the protease chamber upon cycles of ATP hydrolysis. Degradation of polypeptides by FtsH is tightly coupled to ATP hydrolysis, whereas ATP binding alone is sufficient to support the degradation of short peptides. Furthermore, comparative structural analysis of FtsH and a related ATPase, HslU, reveals interesting similarities and differences in mechanism.  相似文献   

19.
Bovine seminal ribonuclease, a homodimeric enzyme joined covalently by two interchain disulphide bonds, is an equilibrium mixture of two conformational isomers, MxM and M=M. The major form, MxM, whose crystal structure has been previously determined at 1.9 A resolution, presents the swapping of the N-terminal segments (residues 1-15) and composite active sites formed by residues of different chains. The three-dimensional domain swapping does not occur in the M=M form. The different fold of each N-terminal tail is directed by the hinge loop (residue 16-22) connecting the swapping domain to the body of the protein. Reduction and alkylation of interchain disulphide bridges produce a monomeric derivative and a noncovalent swapped dimer, which are both active. The free and nucleotide-bound forms of the monomer have been crystallized at an alkaline pH and refined at 1.45 and 1.65 A resolution, respectively. In both cases, the N-terminal fragment is folded on the main body of the protein to produce an intact active site and a chain architecture very similar to that of bovine pancreatic ribonuclease. In this new fold of the seminal chain, the hinge loop is disordered. Despite the difference between the tertiary structure of the monomer and that of the chains in the MxM form, the active sites of the two enzymes are virtually indistinguishable. Furthermore, the structure of the liganded enzyme represents the first example of a ribonuclease complex studied at an alkaline pH and provides new information on the binding of a nucleotide when the catalytic histidines are deprotonated.  相似文献   

20.
The fluorinase enzyme represents the only biological mechanism capable of forming stable C–F bonds characterized in nature thus far, offering a biotechnological route to the biosynthesis of value-added organofluorines. The fluorinase is known to operate in a hexameric form, but the consequence(s) of the oligomerization status on the enzyme activity and its catalytic properties remain largely unknown. In this work, this aspect was explored by rationally engineering trimeric fluorinase variants that retained the same catalytic rate as the wild-type enzyme. These results ruled out hexamerization as a requisite for the fluorination activity. The Michaelis constant (KM) for S-adenosyl-l -methionine, one of the substrates of the fluorinase, increased by two orders of magnitude upon hexamer disruption. Such a shift in S-adenosyl-l -methionine affinity points to a long-range effect of hexamerization on substrate binding – likely decreasing substrate dissociation and release from the active site. A practical application of trimeric fluorinase is illustrated by establishing in vitro fluorometabolite synthesis in a bacterial cell-free system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号