首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 90 毫秒
1.
用铸渗工艺对消失模铸铁件进行表面合金化的研究   总被引:3,自引:0,他引:3  
利用干砂消失模铸造工艺,对铸铁件表面合金化铸渗机理进行了研究,通过建立数学模型,对铸渗过程中铁水传输进行了理论分析,给出了铸渗量与浇口的大气压力、铁水静压力、渣液阻力及附加压力的关系式,提出了铸渗量大小主要取决于铸渗孔道半径的新观点.用正交试验对合金涂层中合金粉粒度、合金粉加入量、溶剂加入量及涂层中聚苯乙烯泡沫加入量等进行了考证,得出最佳工艺配方为:合金粉粒度75~100目;泡沫加入量30%~50%(ψ(B));溶剂加入量4%.在配制合金涂料时,适当加入一定量泡沫珠粒,有利于母液渗透,这与理论推导结果相符,易获得3 mm以上合金层厚度.合金层具有珠光体基体及大量M7C3碳化物,并具有高硬度及高抗磨性.  相似文献   

2.
利用消失模铸造工艺,通过正交实验合金化工艺,重点研究了表面合金化的形成机理,建立了消失模铸件表面合金化模型,分析了合金化过程的动力。在不同真空度、金属粒度、温度为780℃的条件下进行浇注,发现在镁合金基体表面形成均匀的合金化层,通过扫描电镜(SEM)分析表层组织变化,对生成的新相进行微区成分和表层线成分分析。研究表明,在表层生成的新相主要是Mg17Al12,并且表层显微硬度明显高于基体。分析了合金化机理和影响形成均匀合金化层的主要因素,得出了合金化颗粒粒度和铸渗动力在合金化过程中起关键作用,随着合金化颗粒粒度和真空度增大,表面合金化效果明显得到了提高。  相似文献   

3.
铸钢件表面铸渗合金化试验研究及应用   总被引:1,自引:0,他引:1  
通过对各组成比例不同的合金涂料进行试验,研究各种涂料对铸件表面质量和合金化层组织的影响,从中选择合理的配比,并应用于破碎机机锤。生产试验结果表明,经表现合金化的破碎机机锤磨耗明显低于未经表现合金化的破碎机锤;合金涂料的配比是铸件表面合金人技术的关键。  相似文献   

4.
消失模铸渗法制备复合材料的研究   总被引:12,自引:0,他引:12  
研究了消失模铸渗法中合金颗粒粒度,粘结剂含量、复合熔剂含量和浇注温度等因素对铸渗工艺的影响,给出了合适的铸渗涂层涂料配比,制备了铸铁HT200表面渗铬复合材料,分析了铸渗层的组织和性能,结果表明合金化涂料配比比较优方案为Cr-Fe粉末粒度为0.127-0.181mm,水溶性酚醛树脂含量为2%(质量分数),复合熔剂为7.5%(质量分数)以及适量水和微量添加剂,浇注温度的适宜范围为1400-1500摄氏度。影响消失模铸渗工艺的各因素主次顺序依次为浇注温度,合金粉末粒度,粘结剂含量和复合熔剂含量,铸渗层由外向里可分为3个区,碳化物类型由M7C3向M3C转变,且硬度逐渐降低,表面合金化层的耐磨性为正火45#钢的2.8倍。  相似文献   

5.
铸渗表面合金化层的组织与性能研究   总被引:3,自引:0,他引:3  
论述了ZG45铸钢铸渗表面合金化层组织与性能的研究结果,并对其形成机制进行了初步探讨。  相似文献   

6.
为提高马氏体不锈钢的耐蚀和耐磨性能,选择40Cr13不锈钢为基材、纯铌板为靶材,采用双辉等离子表面冶金技术在不锈钢表面制备合金化层.用SEM、GDOES、XRD等方法分析渗铌温度对铌合金层组织、成分、相组成、表面形貌及硬度的影响,并对渗层形成机制及表面硬化机理进行了研究.结果表明:在900~1 000℃形成的铌合金层组织均匀致密,合金层主要由Nb2C、Nb C、Fe2Nb、Cr2Nb及铌组成;合金层表面粗糙度随渗铌温度的提高而增加;合金层厚度随渗铌温度改变发生不同变化规律,950℃渗铌形成的渗层约13μm,900和1 000℃渗铌后合金层厚度均为7μm左右;不同温度渗铌后试样的表面硬度与基体相比均有较大幅度的提高,1 000℃渗铌后试样表面硬度高达约985 HV0.025,900℃渗铌后约758 HV0.025,而950℃渗铌后表面硬度最低,约698 HV0.025.  相似文献   

7.
H原子对固态合金化颗粒表面成份分布影响的研究   总被引:1,自引:0,他引:1  
任山  吕曼祺 《功能材料》1998,29(2):171-174
本文研究了氢化物TiH2对Fe+Ti机械合金化非晶储氢合金的表面成份偏聚和性能的影响。应用X射线光电子谱(XPS)和俄歇电子谱(AES)对样品表面由表及里逐层测量成份分布。同时应用热重分析方法研究了样品氧化性能和产物。研究结果表明,在机械合金化过程中,H原子不仅能使FeTi非晶化,同时促使表面产生明显的Fe原子偏聚。表面Fe/Ti原子比接近7。非晶FeTi(H)相的氧化分两个阶段进行,Ti原子首先氧化(833K),随后Fe原子氧化(890K)。  相似文献   

8.
制备成分为Cu20Ni35Mn的合金试样,对铸态锰白铜合金直接进行时效处理,研究了不同的时效工艺对锰白铜合金的强化效果,分析了时效强化机理.实验结果表明,锰白铜合金在铸态下可以直接进行时效处理,最佳时效工艺为:时效温度400~470℃,时效时间为60~72h,硬度可达到HV400以上.并发现MnNi相的析出是合金时效强化的主要原因.  相似文献   

9.
上官倩芡  程先华 《材料保护》2004,37(Z1):109-110,112
研究了稀土元素对齿轮钢碳氮共渗过程及其摩擦磨损性能的影响.结果表面:稀土对齿轮钢碳氮共渗过程有明显的催渗作用;稀土在碳氮共渗中渗入钢表面起微合金化作用改善了渗层组织;稀土碳氮共渗处理后的抗干磨损性能及抗滑动磨损性能均明显优于普通碳氮共渗处理.  相似文献   

10.
杨帆  贾卫平  吴蒙华 《材料保护》2012,45(9):48-51,8
为了探讨磁场作用下电铸工艺参数对单面覆铜板表面铸层显微形貌的影响,以铸层的显微硬度为指标,采用正交试验优选了微电铸工艺参数,探讨了磁场强度、电流密度以及超声功率对铸层表面形貌的影响规律,确定了磁场作用下制备高硬度且铸层平整、致密的最优工艺参数。结果表明:施加磁场后,金属离子受到磁流体力学效应对电铸过程产生影响;随着磁场强度的增大,铸层晶粒逐渐得到细化,形状更加规则;随着电流密度、超声功率的增大,铸层晶粒均呈现出先细化后粗化的规律。磁场强度0.6T、电流密度2A/dm2、超声功率240W、占空比20%下所得铸层晶粒粒径均匀,表面平整致密,显微硬度较高,具有良好的综合性能。  相似文献   

11.
采用消失模铸渗法,在聚苯乙烯(EPS)泡沫模型表面涂刷铸渗涂料,浇注后铁水渗入涂料层,得到表面耐磨铸铁。铸渗涂料的主要组成为SiC粉、EPS粉、Cr-Fe粉、RE添加剂、粘结剂等。研究了表面渗层的组织及显微硬度,用ML-100磨粒磨损试验机测试了渗层的耐磨性。试验表明渗层组织中的珠光体及片状石墨比基体细化,渗层显微硬度是基体铸铁的2.1倍,渗层的磨损量是基体铸铁的33%。分析探讨了表面渗层耐磨性较高的原因。  相似文献   

12.
离子钨钼共渗的表观过程   总被引:2,自引:0,他引:2  
研究了双层辉光离子钨钼相渗在离子轰击条件下形成渗层和无离子轰击时形成沉积层的表观过程。结果表明,在形成沉积层时,由于离子轰击作用已在不存在,使渗层厚度减少26%,用朗缪尔探针对双层辉光离子钨钼共渗过程进行了等离子体的诊断,等离子体对表现成分有较大影响。合理的等离子体密度范围为5*10^-11-3*10^12。  相似文献   

13.
Quantitatively evaluating the fatigue strength of ductile iron (DI) with casting surfaces involves several complicated factors such as surface roughness, transition of microstructures from surface to interior, several types of defects and residual stresses. Tension–compression fatigue tests have been performed using DI having casting surfaces composed of a ferritic structure, a ferrite‐pearlitic structure and a pearlitic structure. Residual stresses were relieved by annealing in order to separately evaluate each factor. The parameter model was applied for quantitative evaluation of fatigue strength. Surface roughness was considered to be mechanically equivalent to a defect, and the effective defect size due to the interaction between the surface roughness and a defect was defined. The present study proposes a method of evaluating the maximum defect size using statistics of extremes and the lower bound of the scatter of fatigue strength, for practical design.  相似文献   

14.
Theoretical and experimental investigations were combined to characterize the influence of surface casting defects (shrinkages) on the high cycle fatigue (HCF) reliability. On fracture surfaces of fatigue samples, the defect is located at the surface. The shape used for the calculation is a spherical void with variable radius. Finite-element simulations were then performed to determine stress distribution around defects for different sizes and different loadings. Correlated expressions of the maximum hydrostatic stress and the amplitude of the shear stress were obtained by using the response surface technique. The loading representative point in the HCF criterion was then transformed into a scattering surface, which has been obtained by a random sampling of the defect sizes. The HCF reliability has been computed by using the Monte Carlo simulation method. Tension and torsion fatigue tests were conducted on nodular cast iron with quantification of defect size on the fracture surface. The S – N curves show a large fatigue life scattering; shrinkages are at the origin of the fatal crack leading to the final failure. The comparison of the computed HCF reliability to the experimental results shows a good agreement. The capability of the proposed model to take into account the influence of the range of the defect sizes and the type of its statistical distribution has been demonstrated. It is shown that the stress distribution at the fatigue limit is log-normal, which can be explained by the log-normal defect distribution in the nodular cast iron tested.  相似文献   

15.
In this research, the effect of austenitic stainless steel cladding on improving the wear behavior of ductile iron was studied. Samples made of ductile iron were coated with steel electrodes (E309L) by manual shielded metal arc welding. The effect of coated layer thickness on microstructure, hardness, and wear resistance of the surface were investigated. Wear resistance of the samples was measured using the pin-on-plate technique. Optical microscopy and scanning electron microscopy were used to investigate microstructure and wear mechanisms. The phases in the interface of both the coating and the substrate were studied by X-ray diffraction. The results showed that a film of white chromium-enriched iron formed at the interface between the substrate and coating which contained iron–chromium complex carbides. It was, therefore, concluded that enhanced properties would be obtained if the coating thickness and the carbides deposited on the surface were reduced. In samples with a thin coating, surface hardness rose to above 1150 HV (five times higher than that of the substrate) and wear resistance increased significantly.  相似文献   

16.
灰铸铁激光熔覆纳米Al2O3的组织研究   总被引:3,自引:0,他引:3  
任露泉  刘燕  于思荣  韩志武 《功能材料》2005,36(7):1065-1068
激光熔覆试验对灰铸铁进行表面改性,纳米Al2O3与铁粉混合作为灰铸铁的表面改性材料,对激光熔覆的凝固过程进行了分析,运用金相显微镜和扫描电镜观察灰铸铁的表面改性层组织,观察得到改性层分为熔覆区、结合区与基体区。并对不同区域组织形态的形成因素分别进行了研究。  相似文献   

17.
A sandwich structured composite containing a hypereutectic high chromium cast iron (HCCI) core and low carbon steel (LCS) claddings was successfully fabricated by centrifugal casting and hot rolling process, and then a series of heat treatments were employed to optimise the performance of the composites. The evolution of microstructures and microhardness of as cast, hot rolled and heat treated specimens were investigated. The results showed that the interfaces combined well with a good metallurgical bonding before hot rolling. Etuectic carbides are crushed, refined obviously and become more isolated. There is not obvious break between primary carbides. The hardness of hot rolled HCCI is 62 HRC, which is higher than that of as cast HCCI (56 HRC) due to the broken and diffusely distributed carbides. The hardness of hot rolled HCCI can reach up to 69 HRC or above after air quenching. The average impact toughness of LCS/HCCI composite could reach up to 10·1 J cm?2, which was almost three times that of the as cast sample. Glide lamellas were observed among the interface due to the stagger of LCS and HCCI.  相似文献   

18.
The fatigue behaviour of a nodular cast iron containing casting defects has been investigated in the high-cycle fatigue regime. In this paper, we propose a fatigue life assessment model for flawed materials based on a fracture mechanics approach which takes into account the position and size of the defect, short crack behaviour and the notch effect introduced by the defect. The fatigue behaviour of smooth samples, and long and short crack behaviour have been experimentally determined in order to identify the relevant mechanical parameters; these being introduced into the model. An experimental study has been made both in air and in vacuum in order to account for the position of the defect, noting that internal defects are supposed to be under vacuum conditions. Experimental results, which are based on a two-crack front-marking technique specially developed for this study, show that the propagation of natural cracks is controlled by the effective stress intensity factor in air as well as in vacuum. The K calculation for a short crack in the stress field of a notch is analysed using numerical elastic–plastic results. Comparison between experimental results and the computation of fatigue life for fatigue lives less than 106 cycles shows that the fatigue behaviour of nodular cast iron is controlled by a propagation process. The model proposed is thus relevant for fatigue lives less than 106 cycles so that the defect can be considered as a crack and the initiation stage neglected. Closer to the fatigue limit, this study shows that the initiation stage should be considered in the assessment of fatigue life of nodular cast iron, because a single macroscopic propagation assessment is not enough to describe the whole fatigue life. The defect cannot be considered as a pre-existent crack in the high-cycle fatigue range (>106 cycles), and the initiation stage that contains microcrack propagation around the defect should be evaluated when assessing the high-cycle fatigue life of nodular cast iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号