首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of unsteady, laminar flow past a circular cylinder which starts translating and oscillating impulsively from rest in a viscous fluid is numerically investigated at a Reynolds number of R = 103. The flow is incompressible and two-dimensional, and the cylinder oscillations are harmonic. The transverse oscillations are only allowed when the maximum oscillatory-to-translational velocity ratio is 0.5. The investigation is based on an implicit finite difference scheme for integrating the unsteady Navier-Stokes equations together with the mass-conservation equation in their vorticity stream function formulation. A non-inertial coordinate transformation is used so that the grid mesh remains fixed relative to the accelerating cylinder. Present calculations are performed within the range of sufficiently large oscillation amplitude to induce separation. The time variation of the in-line and transverse force coefficients are presented. The study also focuses on the laminar asymmetric flow structure in the near-wake region. In this flow regime, it is found that there is alternate shedding of vortices from either side of the cylinder over an oscillation cycle (as predicted experimentally); this is the classical mode of vortex shedding leading to formation of the Kármán street.  相似文献   

2.
The influence of a square base placed at the bottom of a vertical cylinder on the wave induced forces and pressures on the cylinder is reported in this paper. In order to carry out this study, initially, the two dynamic variables on the cylinder in the absence of the base was studied so as to make sure the quality of measurements is satisfactory. The experimental results are compared with MacCamy and Fuchs' theory and the agreement found good.  相似文献   

3.
The drag and added mass coefficients of a truss leg of an ocean platform are obtained by using the forced-oscillation technique in a still water. Higher order forces and lift forces are also measured.The drag and inertia coefficients of the truss leg model are obtained by measuring the wave forces acting on it in regular deep waves. The moment lever of the wave force is compared with theoretical results.  相似文献   

4.
An evaluation of four well-known Reynolds-Averaged Navier-Stokes (RANS)-based turbulence models was performed in comparison with the results of a dedicated experimental measurement on the near-wake of a circular cylinder in a large water (cavitation) tunnel using a state-of-the-art two-dimensional Digital Particle Image Velocimetry (DPIV) device.The turbulence models investigated were Spalart-Allmaras (S-A), Realizable k-ε (RKE), Wilcox k-ω (WKO) and Shear-Stress-Transport k-ω (SST), which were assessed based on their comparative performances in predicting some important flow field characteristics of the near-wake region of the experimental circular cylinder flow. Within the flow range investigated in this study, which implied a cylinder diameter-based Reynolds Number of 41,300, the qualitative and quantitative comparisons revealed that the application of the SST model to the wall-bounded unsteady flow - that experienced severe adverse pressure gradient, massive flow separation and vortex shedding - presents more successful predictions compared to other models investigated for such challenging flow conditions.  相似文献   

5.
The research into hydrodynamic loading on ocean structures has concentrated mostly on circular cross-section members and relatively limited work has been carried out on wave loading on other cross-sections such as rectangular sections. These find applications in many offshore structures as columns and pontoons in semi-submersibles and tension-leg platforms. The present investigation demonstrates the behaviour of rectangular cylinders subject to wave loading and also supplies the hydrodynamic coefficients for the design of these sections.This paper presents the results of wave forces acting on a surface piercing truncated rectangular cylinder set vertically in a towing tank. The experiments are carried out in a water depth of 2.2 m with regular and random waves for low Keulegan–Carpenter number up to 6. The rectangular cylinder is of 2 m length, 0.2 m breadth and 0.4 m width with a submergence depth of 1.45 m from still water level. Based on Morison equation, the relationship between inertia and drag coefficients are evaluated and are presented as a function of KC number for various values of frequency parameter β, for two aspect ratios of cylinders, equals to 1/2 and 2/1. Drag and inertia coefficients obtained through regular wave tests are used for the random wave analysis to compute the in-line force spectrum.The results of the experiments show the drag and inertia coefficients are strongly affected by the variation in the aspect ratios of the cylinder. The drag coefficients decreases and inertia coefficients increases with increase in Keulegan–Carpenter number up to the range of KC number tested. The random wave results show a good correlation between measured and computed force spectrums. The transverse forces in both regular and random waves are found to be small compared to in-line forces.  相似文献   

6.
Marine cycloidal propulsion system is efficient in maneuvering ships like tugs, ferries, etc. It is capable of vectoring thrust in all direction in a horizontal plane. When used in pair, the system enables a vessel to perform maneuvers like moving sideways, perform rotation about a point, i.e. turning diameter of its own length, etc. In this system, the propeller blades have to change their angle of attack at different angular position of the disc. Due to this reason, the inflow velocity vector to propeller blades changes continuously. The propeller blade oscillates about a vertical axis passing through its body and at the same time rotates about a point. Superposed on these motions is the dynamics of the ship on which the propulsion system is installed. This results in a formidable and challenging hydrodynamics problem. Each of the propeller blade sections could be considered as an aerofoil operating in combined heave and pitch oscillation mode. Due to the constantly varying inflow velocity, the hydrodynamic flow is unsteady. The unsteady hydrodynamic flow is simulated by incorporating the effect of shed vortices at different time instant behind the trailing edge. Due to the kinematics of the problem, the blade is subjected to higher structural deformation and vibration load. The structural deformation and vibration when coupled with the hydrodynamic loading add another level of complexity to the problem. In this paper, the variation of hydrodynamic load on the propeller blade due to steady and unsteady flow is compared. We also model the structural dynamics of the blade and study its effect on the hydrodynamic loading. Finally, we couple the structural dynamics with hydrodynamics loading and study its influence on the propeller blade for different operating regimes.  相似文献   

7.
The hydrodynamic performance of the oscillating water column type shoreline-mounted wave-power device is numerically studied within linear wave theory by using a boundary element method based on the Wehausen and Laitone 3D shallow water Green's function. In order to verify the numerical model, a 1:12 physical model with different bottom slopes was constructed and tested in a wave basin under regular wave conditions. The effects of the bottom slope on the hydrodynamic performance are investigated by both analytical and experimental methods.  相似文献   

8.
X.K. Wang  S.K. Tan 《Ocean Engineering》2008,35(5-6):458-472
The flow patterns in the near wake of a cylinder (either circular or square in shape, D=25 mm) placed in the proximity of a fully developed turbulent boundary layer (thickness δ=0.4D) are investigated experimentally using particle image velocimetry (PIV). The effects of changing the gap height (S) between the cylinder bottom and the wall surface, over the gap ratio range S/D=0.1–1.0, have been investigated. The results show that both the ensemble-averaged and instantaneous flow fields are strongly dependent on S/D. The flow patterns for the two types of cylinders share many similarities with respect to the change in S/D, such as the reduced recirculation length and increased velocity fluctuation in the near wake with increasing S/D, as well as the trend of suppression of vortex shedding at small S/D and onset of vortex shedding at large S/D. However, developments of the shear layers, in terms of wake width, flow curvature, etc., are considerably different for these two types of cylinders. In general, the wake development and momentum exchange for the square cylinder are slower those for the circular cylinder at the same gap ratio. Correspondingly, it is shown that the periodic vortex shedding is delayed and weakened in the case of square cylinder, as compared to that of the circular cylinder at the same S/D.  相似文献   

9.
The present brief paper is intended to show that the fluid forces on a small cylinder can be considerably magnified when it is in the flow field of a larger cylinder. Two cylinders of unequal diameter are oscillated in a tank of fluid, and the lift and in-line forces on the smaller cylinder are measured when the pair of cylinders is placed at various orientations and spacings.  相似文献   

10.
We describe in this paper the experimental investigations of the interaction of a bottom-pivoted vertical cylinder with water waves and flow, to determine the dominant-load-regime map by application of response step functions and response RAO. A rigid circular cylindrical mass-damper-spring oscillator system is investigated in regular waves and uniform flow to determine the response characteristics in the frequency domain. Interaction with waves dominates in the high frequency range f* = fosc/ωv = 0.862–1.547, with magnitude in the range of 0.1 rad. On the other hand, interaction with flow dominates at lower frequency range, f* = 0.442–0.862, with magnitude in the range of 0.01 rad. These are caused by the non-overlap peak positions of the magnitude response in waves and flow due to the change in added mass of the cylinder moving in different types of fluid loads. The frequency f* = 0.862 is the point where the dominant factors are transferred. The location of separation points determines the pressure distribution to induce the added mass changed. Separation positions determine the magnitude response, but do not determine the configuration of response RAO. That allows to enhance or reduce the magnitude response of the cylinder by taking advantage of the dominant-load-regime map in the frequency domain.  相似文献   

11.
This paper reports on the prediction of the hydrodynamic forces on a full-scale mini Tension Leg Platform (TLP) of the type typically deployed for deep-sea operation. Two alternative prediction techniques were used: Computational Fluid Dynamics (CFD), which is based on the solution of the fundamental equations that govern turbulent fluid flow; and ‘engineering’ calculations based on force coefficients derived from a design code that is in routine use in the Offshore Industry. The results from these two techniques were compared with each other and with experimental data obtained from wind-tunnel and towing-tank tests on a 1–70 scale model. It was found that the two techniques, while yielding very similar predictions for the front TLP members, give substantially different predictions for the aft members — a result that is consistent with the presence of significant interference effects that are captured only by the CFD. The design code yielded the highest value for the global drag coefficient, followed very closely by the towing-tank result. The wind-tunnel tests produced the lowest value for this parameter. The CFD predictions, which were the first to be obtained in this study, fall in the mid-range of the experimental values. These and other results are discussed in the context of the use of CFD in practical design applications.  相似文献   

12.
This paper considers wave impacts on baffles, on baffles or decks adjacent to a vertical wall, and on porous seawalls and/or sea beds. For seawalls and vertical baffles, impacts can occur in steep waves, whilst a deck can be struck from below by a rising wave crest either in open sea or in a tank with standing waves (sloshing). A simple analytical model for the pressure impulse, P, due to a wave of idealized geometry and dynamics is developed and applied to the following geometries with impermeable surfaces:
  • •horizontal wave impact onto a vertical wall with a deck at the waterline,
  • •vertical wave impact under a deck in the same configuration (equivalent to vertical water impact of a horizontal plate),
  • •horizontal wave impact onto a surface-piercing vertical baffle in open sea,
  • •as for 3. but with the baffle in front of a wall,
  • •as for 4. but with a deck extending from the vertical wall to the baffle,
  • •bottom-mounted baffle in front of a wall with impact occurring on the wall.
We also consider cases that complement part 1 of this paper to include the effect on impacts on a seawall with a porous sea bed and/or sea wall with/without a berm. Finally we reconsider case 3) above but with a porous baffle.The method uses eigenfunction expansions in each of the rectangular regions that satisfy some of the impermeable or porous surface conditions, and a simplified free-surface condition. Their unknown coefficients are determined from the impact boundary condition, impermeable or porous boundary conditions and by matching the solutions, in any two neighbouring rectangles, along their common boundary. Although the fluid motion is treated rather crudely, the method yields the pressure impulse throughout the entire region. Impulses, I, and moment impulses, M, on all or parts of the structure are also presented.  相似文献   

13.
俞嘉臻  张显涛  李欣 《海洋工程》2022,40(5):98-110
由于沿海区域的限制以及愈加严重的环境污染,渔业养殖正从近海走向深远海。深远海海域的海况更加恶劣,给养殖装备的设计与性能评估带来新的挑战。为解决该问题,对极端波浪与养殖装备网衣结构的相互作用开展研究。基于waves2Foam建立数值波浪水池,极端波浪模拟采用基于NewWave理论的聚焦波模型,网衣结构模拟采用多孔介质模型,并通过与Morison模型计算的网衣受力等效分析,获得多孔介质模拟网衣结构阻力系数的直接估计方法。然后将多孔介质模型嵌入waves2Foam中,开展聚焦波与网衣结构相互作用的数值模拟,同时开展水槽试验,验证数值模拟的准确性。基于数值模拟结果,系统地分析了不同网衣密实度及不同波浪参数下网衣结构的升阻力特性以及网衣结构对波浪场的扰动规律。研究表明:聚焦波波峰幅值和网衣密实度对网衣结构的升阻力影响较大,且升力峰值出现在阻力为0的时刻;网衣结构对聚焦波的时空演化特性有影响,改变了聚焦波波形。  相似文献   

14.
This paper shows how the second order wave pressure on the submerged surface of a body may be obtained without solving the boundary value problem for the second order velocity potential. The corresponding analytical solution for a vertical circular cylinder is developed, and selected results are presented which illustrate a number of novel phenomena not occurring in first order diffraction analysis.  相似文献   

15.
The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper.Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined functions of FLUENT.The added mass coefficient and the damping coefficient of heave plate with tapering condition and the chamfer condition are calculated.The results show that,in a certain range,the hydrodynamic performance of heave plate after being tapered is better.  相似文献   

16.
针对圆筒码头结构特点,在现场检测和结构安全性评估方面进行了研究,然后结合一种特殊圆筒码头结构实例进行了现场检测和结构安全评估介绍。研究发现,该特殊圆筒码头结构与一般的重力式码头和高桩码头结构有较大不同,在进行结构检测时应专门制定检测方案;结构安全性评估时应重点对结构倾覆、结构滑移及重要构件进行安全计算,以确保结构安全。  相似文献   

17.
《Ocean Modelling》2010,34(3-4):299-313
A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.  相似文献   

18.
An Oscillating Water Column (OWC) device can output energy through reciprocating or unidirectional airflow. The unidirectional airflow is helpful to utilize a simple and high-efficiency unidirectional air turbine. The pentagonal BBDB proposed by us based on OWC principle can be regarded as a floating Oscillating Body and its Power Take-Off (PTO) consists of a chamber, a water column, a turbine and a generator. The Capture Width Ratio (CWR) of the pentagonal BBDB model with the reciprocating and unidirectional airflow was studied in this paper. The wave flume test results indicate the mean CWR of the pentagonal BBDB model with reciprocating airflow can reach up to 121.91% and the mean CWR of the model with unidirectional airflow could reach 100.94% during the whole wave cycle in regular waves. For irregular waves, the mean CWR of the model with the unidirectional airflow is as high as 62.83% during the whole wave cycle. Hopefully, the combination of the pentagonal BBDB with the check valve to output power during the air exhalation and conventional high-efficiency unidirectional turbine will improve the total efficiency of the BBDB.  相似文献   

19.
Based on a set of Boussinesq-type equations with improved linear frequency dispersion characteristics in deeper water, the present paper incorporates the simplified effect of spilling wave breaking into the equations. The analysis is restricted to a single horizontal dimension but the method can be extended to include the second horizontal dimension. Inside the surf zone the vertical variation of the horizontal velocity profile is assumed to be composed of an (initially unknown) organised velocity component below the roller and a surface roller travelling with the wave celerity. This leads to a new set of equations which is capable of simulating the transformation of waves before, during and after wave breaking. The model is calibrated and verified by comparison with several wave flume measurements. The results show that the model produces sound physical results.  相似文献   

20.
以某25万吨矿石码头工程为例,分别进行了单流、单浪和浪流共同作用下,系泊船舶撞击力和系缆力试验。研究了不同水位、不同船舶载度、不同浪流夹角,单流、单浪和浪流共同作用时对船舶撞击力和系缆力的影响。分析了该码头工程护舷和缆绳的布置情况,为工程设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号