首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands between March 1976 and October 1979. Measurements of EUV and soft X-ray emission from a large number of solar flares were obtained. Although solar flare measurements in the soft X-ray bands are continuously made and used as a standard of a flare's geophysical significance, direct measurements of flare EUV emission are quite rare. We present measurements of the X-ray and EUV emission from several flares with special emphasis on the relative EUV response associated with flares in different categories determined by 1 to 8 Å soft X-ray flux. An example of a flare exhibiting an impulsive (nonthermal) phase is included.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 Semptember 1980, Scheveningen, The Netherlands.  相似文献   

2.
The dynamics of hard X-ray producing electron beams in solar flares can be strongly affected by the occurrence of a reverse current. The parameter diagram for a beam can be divided into three regimes, one of which is the usual thick target case, the two others being due to two different possible consequences of the reverse current. The use of this parameter diagram as a possible diagnostic tool for solar flare hard X-ray sources is discussed, together with the necessary observations and their interpretation.The forthcoming Solar Maximum Mission, complemented with concurrent ground-based efforts provide the next possibility to obtain these observations, given a good coordination of observing programs. We stress the importance of microwave (GHz) ratio observations with good temporal (few sec) and spatial resolution (1) in one dimension, and of reliable spectroscopic methods to determine the density in solar flare hard X-ray sources.  相似文献   

3.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

4.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE c , where 15 keV <E c < 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources.  相似文献   

5.
Edges in the solar soft X-ray flare continuum have been observed with the NRL Bragg crystal spectrometer aboard OSO-4. The edges near 2.06 Å, 2.8 Å, and 4.46 Å are interpreted to be due to an innershell dielectronic recombination process, details of which are presented. Two other edges, 3.59 Å and 3.31 Å, are interpreted to be due to recombination of the bare sulfur ion and innershell transitions of calcium.  相似文献   

6.
A number of solar X-ray events above 10 keV and 20 keV were compiled in order to test for evidence of anisotropic emission. The results are not definite, although the two samples show apparently different behaviours.  相似文献   

7.
Hard X-ray (?100 keV) time histories of solar flares which occurred on 1978 December 4 and 1979 February 18 are presented. The first flare was observed by 3 identical instruments from near-earth orbit (Prognoz 7) and interplanetary space (Venera 11 and 12). Fine time structure is present down to the 55 ms level for the e-folding rise and fall times. These data may be used to localize the emission region by the method of arrival time analysis.  相似文献   

8.
An improved X-ray polarimeter is briefly described and preliminary results of the measurements carried out on the satellite Intercosmos-7 are presented. One flare with considerable polarization (P 16%) was observed on 1972 August 4. Two other flares with rather low polarization (P 4%; P 2%) were observed on 1972 August 7 and 11.  相似文献   

9.
A solar flare on June 15, 1973 has been observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope on Skylab. Both morphological and quantitative analyses are presented. Some of the main results are: (a) the overall configuration of the flare is that of a compact region with a characteristic size of the order of 30 at the intensity peak, (b) this region appears highly structured inside with complex systems of loops which change during the event, (c) a brightening over an extended portion of the active region precedes the flare onset, (d) the impulsive phase indicated by the non-thermal radio emission is a period during which a rapid brightening occurs in loop structures, (e) the X-ray emission is centered over the neutral line of longitudinal magnetic field, and the brightest structures at the flare onset bridge the neutral line, (f) loop systems at successively increasing heights form during the decay phase, finally leading to the large loops observed in the postflare phase, (g) different parts of the flare show distinctly different light curves, and the temporal development given by full disk detectors is the result of integrating the different intensity vs time profiles.The implications of these observations for mechanisms of solar flares are discussed. In particular, the flux profiles of different regions of the flare give strong evidence for continued heating during the decay phase, and a multiplicity of flare volumes appears to be present, in all cases consisting of loops of varying lengths.On leave from Arcetri Astrophysical Observatory, Florence, Italy.  相似文献   

10.
The role of heat flux limitation in soft X-ray emitting solar flare plasmas is considered. Simple analytic arguments suggest that flux limitation is likely to be important during the explosive heating phase, even for relatively modest coronal energy fluxes (say 109 erg cm-2 s-1). This conclusion is reinforced by a detailed flare loop simulation of the heating phase. Since flux saturation effectively bottles up the coronal heat flux, mass motions now assume a dominant role in transferring energy from the coronal flare source to the lower transition region. The mass-energy exchange between the corona and chromosphere produces dramatic changes in the thermal structure of the plasma which are reflected in the differential emission measure profile of the flaring loop.  相似文献   

11.
K. Hurley  G. Duprat 《Solar physics》1977,52(1):107-116
A solar flare which occurred on 4 July 1974 was observed in hard X-rays with a balloon-borne detector. When analyzed with a time resolution of 100 ms, four 2 s long spikes are observed, which are correlated with decimetric emission. Spectral analysis shows that the hardest X-rays were produced during the decay phase of the burst, when the microwave emission reached its peak. It is argued that the fine time structure could either be a bounce time effect, or that it could be due to the electron acceleration mechanism.  相似文献   

12.
Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed.  相似文献   

13.
We have compared microwave imaging data for a small flare with simultaneous hard X-ray spectral observations. The X-ray data suggest that the power-law index of the energy distribution of the radiating electrons is 5.3 (thick-target) which differs significantly from the estimate ( = 1.4) from a homogeneous optically-thin gyrosynchrotron model which fits the radio observations well. In order to reconcile these results, we explore a number of options. We investigate a double power-law energy spectrum for the energetic electrons in the flare, as assumed by other authors: the power law is steep at low energies and much flatter at the higher energies which produce the bulk of the microwaves. The deduced break energy is about 230 keV if we tentatively ignore the X-ray emission from the radio-emitting electrons: however, the emission of soft photons by the flat tail strongly contributes to the observed hard X-ray range and would flatten the spectrum there. A thin-target model for the X-ray emission is also inconsistent with radio data. An inhomogeneous gyrosynchrotron model with a number of free parameters and containing an electron distribution given by the thick-target X-ray model could be made to fit the radio data.  相似文献   

14.
Solar flare hard X-ray observations   总被引:2,自引:0,他引:2  
Recent hard X-ray observations of solar flares are reviewed with emphasis on results obtained with instruments on the Solar Maximum Mission satellite. Flares with three different sets of characteristics, designated as Type A, Type B, and Type C, are discussed and hard X-ray temporal, spatial, spectral, and polarization measurements are reviewed in this framework. Coincident observations are reviewed at other wavelengths including the UV, microwaves, and soft X-rays, with discussions of their interpretations. In conclusion, a brief outline is presented of the potential of future hard X-ray observations with sub-second time resolution, arcsecond spatial resolution, and keV energy resolution, and polarization measurements at the few percent level up to 100 keV.  相似文献   

15.
Our main goal is to show that the spatial and temporal dynamics of the temperature content for plasma structures in the solar corona can be described quantitatively in principle, which is necessary for understanding the formation mechanisms of soft X-ray emission. An approach based on a consistent modeling of complex data from the CORONAS-F, GOES, and RHESSI satellites is suggested. A basically new element of this approach is the use of time series of monochromatic full-Sun images in the X-ray MgXII 8.42 Å line and EUV lines obtained in the SPIRIT experiment onboard CORONAS-F. Two inversion procedures have been used to determine the volume and column differential emission measures defined by the Stieltjes integral: an optimization one based on a multitemperature parametric model and an iterative one based on the Bayesian theorem, respectively. The calculations with coronal abundances agree with the RHESSI data within the experimental error limits, while those with photospheric abundances give no satisfactory agreement. The relatively cold (with temperature 2–4 MK) and transient (4–10 MK) plasmas are shown to play a significant role in producing soft X-ray emission during flare events and in their energy budget. The spatial electron density and temperature distributions and their time evolution have been obtained for long-duration events that were first observed in the monochromatic MgXII channel and were previously called “spiders.” The method used has allowed us to verify the absolute intercalibration of the fluxes recorded in all experiments and to reference the SPIRIT MgXII images to the solar disk. We also consider possible flare plasma heating mechanisms for impulsive and long-duration (spider) flare events.  相似文献   

16.
We compare solar X-ray observations from the UCSD experiment aboard OSO-7 with high resolution energetic electron observations from the UCAL experiment on IMP-6 for a small solar flare on 26 February 1972. A proportional counter and NaI scintillator covered the X-ray energy range 5–300 keV, while a semiconductor detector telescope covered electrons from 18 to 400 keV. A series of four non-thermal X-ray spikes were observed from 1805 to 1814 UT with average spectrum dJ/d (hv) (hv)–4.0 over the 14–64 keV range. The energetic electrons were observed at 1 AU beginning 1840 UT with a spectrum dJ/dE E –3.1. If the electrons which produce the X-ray emission and those observed at 1 AU are assumed to originate in a common source, then these observations are consistent with thin target X-ray production at the Sun and inconsistent with thick target production. Under a model consistent with the observed soft X-ray emission, we obtain quantitative estimates of the total energy, total number, escape efficiency, and energy lost in collisions for the energetic electrons.  相似文献   

17.
Solar Physics - The soft X-ray background flux (XBF) based on GOES 1–8&;nbsp;Å measurements for the period 1975–2003 is studied. There is strong evidence that in the XBF the...  相似文献   

18.
This paper presents studies of the vertical structure of hard X-ray flares for two contrasting examples. The 1981 May 13 flare contained a coronal hard X-ray source which was located above 50000 km above the photosphere. On the other hand, the 1981 July 20 flare had a chromospheric double source structure in the initial phase. Electrons in this case were able to stream freely from the corona to the chromosphere.  相似文献   

19.
Soft X-ray flare observations, interpreted as the emission from a single temperature plasma, frequently indicate a significant decrease in the inferred emission measure. It is shown that this effect results naturally from the isothermal assumption, and is eliminated when the preflare contribution to the total emission is removed.  相似文献   

20.
Using the results of numerical simulations of the solar atmospheric response to heating by nonthermal electron beams during solar flares, we have calculated the spatial and temporal evolution of both (i) the direct (beam-target) nonthermal bremsstrahlung and (ii) the thermal bremsstrahlung arising from the hot plasma energized by the electron beam. Typically, we find that below a certain cross-over energy E *, the emission is dominated by the thermal component, while at higher energies the direct bremsstrahlung component becomes more important. This cross-over energy is dependent on the position within the loop, generally increasing with height.We have also investigated the dependence of the cross-over energy E * on the parameters of the electron energy input. At the time of peak electron flux injection the cross-over energy E * can, for plausible parameters, be as high as 52 keV at the top 1 pixel, and as low as 16 keV at the bottom 1 pixel. We conclude that a possible reassessment of SMM HXIS data as an indicator of the thermal or nonthermal character of the primary energy release (based primarily on the geometric properties of the hard X-ray source) is required. Our results also point to the minimum photon energy that future instruments should observe (where practical, giving due consideration to detector sensitivity) in order to be sure that, in the context of the thick-target interpretation, the nonthermal component is not swamped by the self-consistent thermal counterpart created by the beam heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号