首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
为揭示中亚热带植被恢复对土壤磷(P)有效性的影响机制,在湘中丘陵区选取了地域毗邻、环境(土壤、气候)条件基本一致、处于不同植被恢复阶段的4种植物群落——檵木-南烛-杜鹃灌草丛(LVR)、檵木-杉木-白栎灌木林(LCQ)、马尾松-柯(又名石栎)-檵木针阔混交林(PLL)以及柯-红淡比-青冈常绿阔叶林(LAG)为研究对象,设置固定样地,按0~10、10~20,20~30,30~40 cm分层采集土壤样品,测定不同季节土壤全磷(TP)和有效磷(AP)含量,比较研究不同植被类型土壤TP、AP含量的差异及其季节变化特征。结果表明:1)不同植被类型同一土层TP含量在各季节总体上随着植被恢复而增加,且LAG与LCQ、LVR(除夏季外)差异显著;季节变化也基本一致,除LAG 0~10 cm土层外,均表现为"夏高冬低(或秋低)型"。2)不同植被类型同一季节同一土层AP含量夏、冬季差异较大,而春、秋季较小,不同植被类型同一土层AP含量在各季节的变化不完全随着植被恢复而逐渐增加;但同一土层AP的季节平均含量基本上随着植被恢复而增加,同一植被类型不同土层AP含量的季节变化不尽相同。3)土壤TP、AP含量与群落总生物量、地上部分生物量、根系生物量、凋落物层现存量、土壤粘粒百分含量、有机碳含量、全N含量呈极显著的正相关关系,与土壤pH值呈显著的负相关关系。4)不同植被类型群落生物量、土壤粘粒百分含量、有机碳含量、全N含量、pH值的差异显著影响土壤TP、AP的含量。  相似文献   

2.
湘中丘陵区不同恢复阶段森林生态系统的碳储量特征   总被引:1,自引:0,他引:1  
【目的】探讨亚热带植被恢复过程中森林生态系统碳储量及其在各层次(植被层、枯落物层、土壤层)分配格局的变化,为揭示植被恢复对森林生态系统碳汇功能的影响机制和分阶段实施森林生态系统碳库管理措施提供科学依据。【方法】采用空间代替时间的方法,在湘中丘陵区选取地域毗邻、环境条件基本一致的檵木+南烛+杜鹃灌草丛(LVR)、檵木+杉木+白栎灌木林(LCQ)、马尾松+柯+檵木针阔混交林(PLL)、柯+红淡比+青冈常绿阔叶林(LAG)作为一个恢复序列,设置固定样地,采用收获法建立部分主要树种相对生长方程和引用部分主要树种通用生长方程估算生物量,采集0~10、10~20、20~30和30~40 cm土层土壤样品,测定植物、土壤碳含量,估算生态系统各层次的碳储量。【结果】植被层各组分碳含量随植被恢复而变化,同一恢复阶段各组分碳含量基本上表现为乔木层灌木层草本层;枯落物层碳含量以PLL最高,其次为LAG,LCQ最低;同一土层碳含量随植被恢复而增加;从LVR到LAG,植被层、枯落物层、0~40 cm土壤层和生态系统碳储量分别增加了70. 80、1. 17、67. 05和139. 02 t C·hm~(-2);植被层、生态系统碳储量各阶段间的增长速率均呈先快后慢的特征,而土壤层呈快—慢—快的特征;不同恢复阶段生态系统碳储量具有一致的垂直分配格局:0~40 cm土壤层植被层枯落物层;随植被恢复,植被层碳储量对生态系统碳储量的贡献率呈增加趋势,而土壤层碳储量的贡献率呈下降趋势,枯落物层变化不大;生态系统、植被层、土壤层碳储量与植物多样性指数(除植被层外)、植被层生物量、土壤碳含量显著(P0. 05)或极显著(P0. 01)正相关。【结论】随着植被恢复,植物多样性、植被层生物量、土壤碳含量、植被层碳储量、土壤层碳储量和生态系统碳储量均增加,但各阶段的增长速率不同。为了提高亚热带森林生态系统碳储量,在植被恢复早、中期阶段,可合理经营促进植被恢复,通过提高植物多样性、植被层生物量、土壤碳含量来提高植被层和土壤层的碳储量;在植被恢复后期阶段,要通过保护好植被来保证土壤碳含量持续增高。  相似文献   

3.
【目的】为了解滇中高原磨盘山典型森林凋落物在不同分解阶段的化学计量特征,揭示滇中高原森林不同分解阶段凋落物的质量特征,为更好地促进滇中高原森林生态系统的凋落物分解进程和养分循环提供理论依据。【方法】以滇中高原的华山松Pinus armandii林、云南松Pinus yunnanensis林、高山栎Quercus semecarpifolia林、滇油杉Keteleeria evelyniana林、常绿阔叶林5种林地为试验区,人为地将自然状态下的森林凋落物分为未分解层、半分解层、已分解层,用以模拟凋落物的不同分解阶段,对不同分解层凋落物的碳氮磷(C、N、P)含量、化学计量比及元素释放率进行分析。【结果】1)随着凋落物分解程度的加剧,5种森林凋落物的C含量不断减少,P、N含量大体呈增加趋势,其中云南松林及华山松林的N含量呈先增加后减少的趋势,常绿阔叶林P含量为先减少后增加,且C、N、P含量在同一分解层中不同森林之间差异显著;2)5种森林凋落物的C∶N、C∶P随着凋落物分解程度的不断降低,云南松林的二者比值最高,N∶P在云南松林、华山松林和常绿阔叶林中先升高后降低,在高山栎林中先降低后升高,在滇油杉林中逐渐降低,且滇中高原森林凋落物C∶P和N∶P均显著小于全球平均水平;3)森林凋落物中C、N、P的总释放率均为滇油杉林>华山松林>高山栎林>云南松林>常绿阔叶林,常绿阔叶林前期元素释放效率快,后期减弱,华山松林和云南松林则相反,滇中磨盘山5种森林凋落物的化学元素易富集难释放。【结论】根据碳、氮、磷的化学计量特征表明,森林种间差异及不同的分解阶段会显著影响凋落物分解过程中的碳氮磷含量、化学计量比及其释放效率。  相似文献   

4.
[目的]为正确评价亚热带植被恢复改善小气候的作用提供科学依据.[方法]采用空间代替时间的方法,以湘中丘陵区地域相邻、生境条件基本一致,处于不同植被恢复阶段的檵木-南烛-满山红灌草丛(LVR)、檵木-杉木-白栎灌木林(LCQ)、马尾松-柯-檵木针阔混交林(PLL)、柯-红淡比-青冈常绿阔叶林(LCC)为研究对象,设置固定...  相似文献   

5.
【目的】探讨亚热带森林恢复过程中枯落物层和土壤层的C,N,P含量及其化学计量比的变化规律,为阐明亚热带次生林恢复对土壤养分的影响及森林恢复提供科学依据。【方法】采用空间代替时间的方法,以湘中丘陵区杉木人工纯林、马尾松+石栎针阔混交林、南酸枣落叶阔叶林和石栎+青冈常绿阔叶林作为1个恢复系列,分别在其1 hm~2的长期定位观测样地内,沿着坡面选择6块10 m×10 m小样地,每块小样地随机设置2个1.0 m×1.0 m样方,采集地表未分解层、半分解层、已分解层枯落物和0~10,10~20和20~30 cm土层土壤样品,测定C,N,P含量并计算C,N,P的化学计量比。【结果】随着森林恢复和阔叶树比例增大,同一分解层枯落物C含量呈下降趋势,而N和P(除已分解层外)含量大体呈增加趋势;C含量随枯落物分解而下降;马尾松+石栎针阔混交林N含量表现为半分解层已分解层未分解层,杉木人工林、南酸枣落叶阔叶林、石栎+青冈常绿阔叶林表现为半分解层未分解层已分解层;南酸枣落叶阔叶林P含量表现为未分解层半分解层已分解层,杉木人工林、马尾松+石栎针阔混交林和石栎+青冈常绿阔叶林均表现为半分解层最高,已分解层最低(除马尾松+石栎针阔混交林外);同一分解层枯落物C∶N、C∶P和N∶P比值随森林恢复而下降;C∶N、C∶P比值随枯落物分解而下降,N∶P比值无明显变化规律;同一土层C,N,P含量随森林恢复而增加;4种林分0~30 cm土壤层C∶N和C∶P平均比值变化趋势基本一致,石栎+青冈常绿阔叶林最高,其次是马尾松+石栎针阔混交林,杉木人工林最低;4种林分0~30 cm土壤层N∶P平均比值无显著差异;未分解层枯落物C含量与0~10和0~30 cm土层C,N,P含量显著负相关,而N,P含量与0~10和0~30 cm土壤层C,N(除N外),P含量显著正相关;未分解层枯落物C∶N、C∶P和N∶P比值与0~10和0~30 cm土壤层C(除N∶P比值外),N,P含量显著负相关;枯落物层C∶N、C∶P和N∶P比值与土壤层C∶N、C∶P和N∶P比值相关性不显著。【结论】随着森林恢复,阔叶树比例增大,枯落物层C∶N、C∶P和N∶P比值逐渐下降,土壤层C,N,P含量增加,未分解层枯落物C,N,P含量及其化学计量比对土壤层C,N,P含量影响显著。在森林恢复和森林经营过程中,如何调整林分树种组成,改变枯落物层的质量显得十分关键。  相似文献   

6.
[目的 ]了解磨盘山区域森林生态系统典型林分林下植被层和凋落物层各组分的C、N、P化学计量比格局,探究物种与器官对林下植被层和凋落物层C、N、P化学计量特征的影响,以期为森林生态系统养分再分配提供理论参考。[方法 ]选取滇中亚高山5种典型森林为研究对象,通过野外采集不同森林林下植被和凋落物样品,对其林下植被层各器官和凋落物层各组分C、N、P生态化学计量特征进行研究。[结果 ]5种林分的林下植被层(灌木叶、茎和根,草本地上和地下部分)和凋落物层(未分解层、半分解层、完全分解层)的C含量变幅分别为410.17~561.08、81.47~625.80 mg·g~(-1),N含量分别为3.07~15.89、9.87~17.50 mg·g~(-1),P含量分别为0.35~0.90、0.37~0.93 mg·g~(-1)。灌木层C、N、P含量除云南松林外均表现为叶根茎,草本层的C、P表现为地下部分地上部分,N含量则相反;凋落物层N、P含量表现为完全分解层半分解层未分解层,C含量与之相反。[结论 ]滇中亚高山典型森林中5种林分林下植被层生长比较缓慢,受到N和P的同时限制;凋落物分解速率偏慢,养分循环能力较低。因此,在森林抚育措施中,可考虑适当保护林下植被,提高土壤肥力,维持其长期稳定生产力。  相似文献   

7.
【目的】研究中亚热带演替阶段相邻的2种森林群落的组成、结构、区系特征,旨在丰富亚热带地区森林动态资料,为加快该地区森林生态恢复和保护生物多样性提供科学依据。【方法】采用空间代替时间方法,结合群落生态学研究方法,在湘中丘陵区选取林龄为45~50年处于演替中期阶段的马尾松+柯(又名石栎)+檵木针阔混交林(PLL)和林龄为80~90年处于演替亚顶极阶段的柯+红淡比+青冈常绿阔叶林(LAG),分别设置3块30 m×30 m固定样地,对胸径≥1 cm的林木进行调查,计算群落多样性指数、特征值和相似系数等指标。【结果】PLL、LAG树种丰富,具有占绝对优势的优势种,且在群落内空间分布比较均匀,LAG树种丰富度和多样性指数高于PLL,且双子叶植物明显增加; PLL、LAG树种组成的差异主要源于乔木树种,特别是常绿阔叶乔木树种,PLL以松科、壳斗科为主,呈现针阔混交林特征,LAG以壳斗科、樟科、漆树科、金缕梅科和八角枫科等常绿阔叶树种为主,呈现常绿阔叶林特征; PLL、LAG的种数和株数垂直结构层次分化明显,LAG各层次树种比PLL更丰富,特别是林下1~5 m层和林冠≥15 m层; PLL、LAG的种数和株数径级结构均呈倒"J"型分布,主要集中在1~8 cm径级; LAG中大径级的种数和株数多于PLL; PLL中,马尾松林下更新失去优势,为衰退型,柯、檵木为增长型,表现出PLL向LAG演替; LAG中,马尾松衰退明显,柯、青冈为增长型,杉木为稳定型; PLL、LAG植物区系以泛热带分布型为主,具有较强热带向温带过渡的性质,LAG热带成分科、属、种多于PLL。【结论】PLL、LAG树种组成、空间结构存在较大差异;亚热带低山丘陵区地带性植被恢复应遵循群落演替动态规律,对已处于演替中期阶段的马尾松针阔混交林可采用封山育林让其自然演替,或通过人工干预(如补植常绿阔叶树种)缩短恢复时间,搭配合理的树种组成,提高林分质量;次生林改造或"针改阔"过程中,应加强泛热带分布型植物的利用,选择起源和演化具有相似性的阔叶树种作为建群种。  相似文献   

8.
[目的]研究间伐后杉木人工林碳(C)、氮(N)、磷(P)生态化学计量关系变化,为杉木人工林养分循环研究提供参考。[方法]在浙江开化县林场17年生杉木人工纯林内,建立9块20 m×20 m的固定样地,测定分析了未间伐、中度间伐(20%间伐强度)和强度间伐(37%间伐强度)处理地表凋落物、林下植被、杉木细根和土壤C、N、P含量及其计量关系。[结果]间伐2 a后,强度间伐处理地表凋落物和杉木细根生物量显著降低,林下植被生物量显著增加。强度间伐处理下地表凋落物总氮(TN)含量显著降低,林下植被总氮(TN)含量则显著增加,土壤有机碳(SOC)和总氮(TN)含量也显著增加,杉木细根C、N、P含量在未间伐、中度间伐和强度间伐之间无显著差异。地表凋落物C/N和C/P随着间伐强度增加而增大;林下植被C/N随着间伐强度增加而减小,N/P比随着间伐强度增加而增大;杉木细根和土壤C/N、C/P和N/P在不同间伐处理之间差异不显著。土壤与林下植被C、N、P含量及其比值具有显著相关性。[结论]间伐后短期内杉木人工林地表凋落物、林下植被和土壤C、N含量受间伐强度显著影响,间伐改变了地表凋落物和林下植被C、N、P生态化学计量关系,但对杉木细根和土壤C、N、P生态化学计量关系无显著影响。  相似文献   

9.
【目的】为了探究火山生态系统凋落物养分释放(或流失)的动态变化规律。【方法】采用凋落物分解袋的方法,以五大连池火山熔岩台地中落叶松、白桦、山杨为代表的优势植物凋落物为研究对象,分析其分解速率及其养分释放动态差异。【结果】6种凋落物叶片的质量残留率在不同时间、树种、来源间存在显著差异。根据Olson指数衰减模型,不同凋落物分解50%的时间是5.73~9.17 a,分解95%的时间是8.04~13.03 a,分解系数为0.545~0.994。分解速率表现为熔岩孤丘>熔岩台地且山杨>白桦>落叶松。从来源来看,凋落物分解过程中,其C含量、N含量以及P含量均表现为熔岩孤丘>熔岩台地,N∶P值均小于14。凋落物质量残留率与C元素呈极显著正相关,与N元素呈极显著正相关,与C∶N值呈显著负相关。C∶N值与N∶P值呈极显著负相关,与质量残留率呈显著负相关。【结论】相对于阔叶树种凋落物叶片,针叶树种凋落物叶片分解较慢。凋落物的C含量变化没有明显规律,P含量变化一致呈现先减后增的趋势,且P元素相比C元素、N元素更不易被溶出,分解过程中,凋落物样品受到N元素的影响最为显著,N含量越高且...  相似文献   

10.
为探明桂南地区马尾松人工林生态系统中碳(C)、氮(N)、磷(P)元素在林下植被和凋落物中的分配格局及化学计量特征,分析林龄和器官对其影响,以广西国有派阳山林场5、13、23、30、40、60年生马尾松人工林为研究对象,通过野外采集不同林龄马尾松林下植被层和凋落物层样品,对其各组分C、N、P化学计量特征进行研究。灌木层C、N、P含量分别为436.13、6.87、0.55 g·kg-1,草本层分别为421.64、6.09、0.59 g·kg-1,凋落物层分别为406.81、6.23、0.75 g·kg-1。C、N含量在灌木层中各林龄均表现为叶>枝>根,在草本层中各林龄均表现为地上部分>地下部分;凋落物未分解层C含量在各林龄均显著高于半分解层(P<0.05)。整体而言,桂南地区马尾松人工林林下植被层C、N、P含量偏低,凋落物层则表现出C、N含量低、P含量高的格局。灌木层和草本层叶的N/P平均值均小于14,表明该区域林下植被均受N限制,可在森林抚育措施中追施N肥,同时也可引入固N植物来提高土壤肥力。  相似文献   

11.
【目的】研究土壤养分和地被层凋落物养分含量的差异,为马尾松人工林营林措施及地力维持提供科学依据。【方法】以鼎湖山两种典型林型(马尾松纯林和马尾松-黧蒴混交林)为研究对象,对比分析0~60 cm土层的土壤养分含量及地被层凋落物养分含量的差异,探索凋落物质量如何影响土壤养分。【结果】1)林型对土壤有机质、全氮和硫酸根含量有显著影响(P<0.05),对土壤全磷、交换性K+、Ca2+和Mg2+有极显著影响(P<0.01),混交林土壤养分含量(除硝态氮含量和交换性H+含量以外)均高于纯林。2)相同林型不同土层间土壤养分含量差异极显著(P<0.01),其中,土壤有机质和全氮含量随土层的加深而递减,且主要聚集在0~10 cm土层,表聚效应十分明显。3)纯林凋落物有机碳、全氮、C/N和全磷等含量高于混交林;相同林型不同分解层凋落物有机碳、全钙和全镁含量有显著差异(P<0.05),均表现为未分解层>半分解层>腐殖质层。4)土壤养分与地被层凋落物质量的RDA分析表明,0~10 cm土层土壤养分与腐殖质层有机碳呈极显著负相关(P<0.01),与腐殖质层C/N呈显著负相关(P<0.05);在10~20 cm土层,土壤养分与腐殖质层有机碳呈极显著负相关(P<0.05)。【结论】纯林的土壤养分低于混交林的主要原因是纯林凋落物具有较高的C/N和有机碳含量。  相似文献   

12.
杉木天然林和人工林涵养水源功能研究   总被引:8,自引:0,他引:8  
通过对杉阔天然混交林、天然杉木林和杉木人工林的林冠层、林下植被层、枯枝落叶层和土壤层水源涵养功能的研究,结果表明:两种天然林总持水量分别比人工林高699 18t·hm-2和337 67t·hm-2,天然林具有更好的涵蓄水分功能。林分不同层次的持水量大小顺序为:土壤层>枯枝落叶层>林冠层>林下植被层,土壤层是森林涵蓄降水的主要场所,其贮水量占林分总贮水量的90%以上。天然林地上部分各层次的持水量分配较为均匀,而杉木人工林林冠层持水量大大高于林下植被和枯枝落叶层的持水量,这种结构不利于削弱林内降雨侵蚀力,土壤也较为板结,渗透功能较差。  相似文献   

13.
中亚热带天然林改造成人工林后土壤呼吸的变化特征   总被引:1,自引:0,他引:1  
【目的】研究中亚热带常绿阔叶林(天然林)改造成人工林后土壤碳排放量的变化及主要影响因子,为评估森林类型转换对土壤碳排放的影响提供科学依据。【方法】在福建农林大学西芹教学林场的常绿阔叶林及由其改造而来的38年生闽楠人工林与35年生杉木人工林中分别设置4块20 m×20 m样地,利用Li-8100土壤碳通量观测系统于2014年9月—2016年9月进行定点观测,并同期观测土壤温度、含水量、有机碳含量(SOC)、微生物生物量碳含量(MBC)、可溶性有机碳含量(DOC)、0~20 cm土层细根生物量和年凋落物量及凋落物碳氮比(C/N)。【结果】常绿阔叶林改造成闽楠(38年后)和杉木人工林(35年后),年均土壤碳排放通量由16. 22显著降为12. 71和4. 83 tC·hm-2a-1,分别减少21. 60%和70. 20%;各林分类型的土壤呼吸温度敏感性Q10值表现为常绿阔叶林(1. 97)<闽楠人工林(2. 03)<杉木人工林(2. 91),转换为杉木人工林后,Q10值显著升高(P<0. 05);土壤温度能分别解释常绿阔叶林、闽楠人工林与杉木人工林土壤呼吸速率变化的89. 70%、88. 50%和87. 90%,土壤呼吸速率和土壤含水量相关不显著(P>0. 05);土壤呼吸速率和SOC、MBC、DOC、年凋落物量及0~20 cm土层细根生物量均极显著正相关(P<0. 01);土壤呼吸温度敏感性指数Q10值和凋落物C/N极显著正相关(P<0. 01),而与年均土壤呼吸速率及MBC极显著负相关(P<0. 01);进一步分析发现土壤MBC和SOC含量是影响土壤呼吸速率的2个最重要因子,而凋落物C/N在影响土壤呼吸温度敏感性中的贡献最大。【结论】中亚热带地区常绿阔叶林改造成闽楠(38年)或杉木(35年)人工林后,土壤碳排放通量显著降低。林分类型转换后树种组成和林分结构发生改变,凋落物数量、质量及细根生物量显著降低,土壤SOC和MBC含量显著下降可共同导致土壤呼吸通量的下降。土壤温度是3种林分类型土壤呼吸季节变化的主导因素,而土壤总有机碳库和土壤微生物量碳库的差异是不同林分之间土壤呼吸差异的主导因素,凋落物C/N对土壤呼吸的Q10影响最大。为提高模型预测森林类型转换影响土壤碳排放的精度,应综合考虑土壤有机碳库、易变性有机碳库及底物质量的变化。  相似文献   

14.
对云南丽江拉市海汇水区面山上6种不同森林群落的枯落物储量和持水性能进行了测定,结果表明:不同森林群落的枯落物储量和持水性差别较大,其枯落物储量从最大的黄背栎林(22.45 t·hm-2)到最小的云南松林(6.54 t·hm-2),均是半分解与分解层的储量大于未分解层的储量;6种森林枯落物的最大持水量,除滇杨林外均是半分解与分解层的大于未分解层的,其最大总持水量排序为黄背栎林(60.77 t·hm-2)丽江云杉林(36.42 t·hm-2)云南松+黄背栎+杜鹃混交林(33.18 t·hm-2)川滇高山栎林(29.23 t·hm-2)滇杨林(18.82 t·hm-2)云南松林(13.72 t·hm-2)。各层枯落物的吸水速率均随浸水时间的延长而逐渐降低,在2 4 h后明显减缓,最终趋于零;且半分解与分解层的吸水速率均大于未分解层。6种森林枯落物的拦蓄水量也表现出半分解与分解层大于未分解层的规律,从大到小依次为黄背栎林(66.94 t·hm-2)丽江云杉林(41.24 t·hm-2)云南松+黄背栎+杜鹃混交林(36.80 t·hm-2)川滇高山栎林(32.99 t·hm-2)滇杨林(21.18 t·hm-2)云南松林(16.59 t·hm-2),降雨拦蓄量深分别为6.70、4.12、3.68、3.30、2.12、1.66 mm。  相似文献   

15.
[目的]探究高寒生态系统土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)含量及化学计量比的垂直分布特征.[方法]以西藏东南部色季拉山西坡海拔4200~4400 m区域为研究区,选择苔草高寒草甸(CAM)、嵩草沼泽化草甸(KSM)、林芝杜鹃灌丛(RTS)和雪山杜鹃灌丛(RAS)4种典型植被类型土壤为研究对象...  相似文献   

16.
江西金盆山林区天然常绿阔叶林生态系统碳储量研究   总被引:1,自引:0,他引:1  
【目的】探讨亚热带典型天然常绿阔叶林碳储量及其碳分布格局,以期为常绿阔叶林生态系统碳汇功能评价提供基础数据和理论依据。【方法】以江西省金盆山林区优势树种生态系统生物量研究为基础,结合主要优势树种碳含量实测数据,对金盆山典型常绿阔叶林丝栗栲林、南岭栲林、米槠林的碳储量及碳空间分布格局进行研究,并以这3种林分的碳密度均值计算整个金盆山林区天然常绿阔叶林总碳储量。【结果】金盆山林区丝栗栲林、南岭栲林、米槠林生态系统碳密度分别为294.82、307.63、318.97 t/hm^2,林区生态系统总碳密度为307.14 t/hm^2,林区现存碳总量为2.25×10^6 t;生态系统碳密度分布规律为植被层>土壤层>凋落物层,植被层碳密度分布规律为乔木层>灌木层>草本层,其中乔木层主干的碳密度占56.54%;土壤层碳密度随着土壤层的加深呈下降趋势,40 cm以下土层间的碳密度变化不明显。【结论】金盆山林区常绿阔叶林不同林分间生态系统碳密度差异不显著,生态系统内碳密度有较强的空间分布规律,生态系统碳密度高于我国森林生态系统平均碳密度和多种典型森林类型碳密度,具有较强的碳汇功能。  相似文献   

17.
Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N) and phosphorous(P) concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland) in the upper 10 cm and 10-20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage.  相似文献   

18.
【目的】比较秦岭辛家山林场云杉和红桦天然林土壤有机碳密度的估算结果,检验新方法通过扣除根系体积而提高的估算精度。【方法】分别估算矿质土层(表土层、心土层和底土层)和有机土层(凋落物的未/半分解层和完全分解层)的有机碳密度。在现有方法的基础上通过扣除林木根系体积含量来提高矿质土层有机碳密度的估算精度。各层林木根系体积含量的估算方法为:首先,使用前人提出的回归方程估算出单株林木根系生物量,乘以林木生长密度得到单位面积林地的根系总生物量;其次,通过采集部分根系样品测定其生物量和体积,并计算出根系样本的密度以代表整体根系的密度;然后,通过单位面积林地的根系总生物量除以根系的密度计算出单位面积林地的根系总体积;最后,利用前人研究得出的根系沿深度的分布规律,将单位面积根系总体积分配到各土层,计算出根系体积含量。对有机土层有机碳密度的估算,使用林木平均地径估算林木根基部所占面积,将有机土层中含有的林木体积扣除。此外,由于有机土层的各组分分布极不均匀,本研究依据来源器官和物理形态对凋落物(有机土层)中的不同成分进行了细致的分组,分别测定各组分的有机碳密度。【结果】云杉林表土层、心土层和底土层的厚度分别为19.10、14.20和31.03 cm,红桦林则分别为18.57、15.13和28.13 cm;云杉林表土层、心土层和底土层的有机碳含量分别为(44.56±3.72)、(25.63±1.77)和(10.79±2.28)g ·kg^-1 ,红桦林的分别为(34.11±5.46)、(19.06±4.95)和(11.02±3.86)g·kg^-1;2种林分有机土层各组分有机碳含量差异显著(P<0.05),凋落物中枝条、根系、云杉球果和苔藓的有机碳含量均大于600 g·kg^-1 ,叶片次之,云杉林和红桦林分别为(458.90±46.81)和(420.72±55.66)g·kg^-1 ,其余难以分辨的细颗粒含量最低均小于300 g·kg^-1;在矿质土层,云杉林各层每公顷根系体积(及体积比例)分别为表土层66.81(3.5%)、心土层20.69(1.5%)以及底土层9.18(0.3%)m^3,红桦林则分别为50.57(2.7%)、31.75(2.1%)和17.22(0.6%)m^3;使用改进公式估算的云杉林矿质土层有机碳密度为16.58 kg ·m^-2 ,有机土层有机碳密度为4.26 kg ·m^-2 ,完全分解层和半分解层分别占84%和16%,矿质土层和有机土层有机碳密度分别较原方法降低2.13%和0.73%;使用改进公式估算的红桦林矿质土层有机碳密度为 14.06 kg ·m^-2 ,有机土层碳密度为3.49 kg ·m^-2 ,分解层和半分解层分别占90%和10%,矿质土层和有机土层有机碳密度分别较原方法降低1.61%和0.48%。【结论】去除根系体积含量后,云杉林与红桦林的土壤总有机碳密度估算值分别降低1.85%和1.39%,这意味着目前预测的林地土壤碳储量可能普遍偏高。  相似文献   

19.
【目的】探讨覆盖经营(稻草+竹叶+砻糠)毛竹林的退化原因,此期为退化毛竹林恢复提供理论参考。【方法】选择不同覆盖年限(1,2和3年)毛竹林,以未覆盖毛竹林作对照,分别测定0~40 cm土层的土壤pH值、养分含量、酶活性及微生物生物量。【结果】随着毛竹林覆盖年限增加,土壤pH值降低(即土壤酸化);土壤有机质含量呈升高趋势;土壤全氮、全磷、全钾含量表现为逐渐升高的变化规律,均显著高于未覆盖毛竹林(P<0.05);土壤速效养分(碱解氮、有效磷、速效钾)含量均呈现先升高后降低的趋势,以覆盖1年的最高,且显著高于未覆盖毛竹林(P<0.05),覆盖3年后显著低于未覆盖毛竹林(P<0.05);土壤C/N和N/P随覆盖年限增加逐渐升高,N/K先升高后降低,而P/K呈逐渐降低趋势;土壤脲酶和蔗糖酶活性均呈现先升高后降低的趋势,以覆盖1年的最高;土壤蛋白酶、过氧化氢酶和酸性磷酸酶活性则呈逐渐降低趋势;土壤微生物生物量呈现先升高后降低的趋势,以覆盖1年的最高;细菌、放线菌生物量与微生物生物量表现出一致的变化规律,真菌生物量则逐渐升高;好氧细菌生物量先升高后降低,覆盖3年后显著低于未覆盖毛竹林(P<0.05);真菌与细菌的生物量比值呈先降低后升高的趋势,但覆盖1年后与未覆盖毛竹林间差异不显著(P>0.05)。【结论】与覆盖1年毛竹林相比,长期连续覆盖经营导致土壤酸化明显,养分比例失衡,酶活性逐渐降低,土壤微生物区系发生变化,从而导致土壤劣变,竹林退化。生产中建议采用休养式覆盖经营模式,即隔年覆盖(覆盖1年休养1年),同时,在自然出笋时要及时清除覆盖物并减少残留量,还需合理使用化肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号