首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methanol is a widely used solvent and a potential fuel for motor vehicles. Human kinetic data of methanol are sparse. As a basis for biological exposure monitoring and risk assessment, we studied the inhalation toxicokinetics of methanol vapor in four female and four male human volunteers during light physical exercise (50 W) in an exposure chamber. The relative uptake of methanol was about 50% (range 47-53%). Methanol in blood increased from a background level of about 20 to 116 and 244 microM after 2 h exposure at 0, 100 ppm (131 mg/m3) and 200 ppm (262 mg/m3), respectively. Saliva showed substantially higher levels than blood immediately after exposure. This difference disappeared in a few minutes; thereafter the concentrations and time courses in blood, urine, and saliva were similar, with half times of 1.4, 1.7, and 1.3 h, respectively. The postexposure decrease of methanol in exhaled air was faster, with a half time of 0.8 h. The methanol concentrations were approximately twice as high in all four types of biological samples at 200 compared to 100 ppm. No increase in urinary formic acid was seen in exposed subjects. Our study indicates non-saturated, dose-proportional kinetics of methanol up to 200 ppm for 2 h. No gender differences were detected. Similar, parallel patterns were seen with regard to the methanol time courses in blood, urine, and saliva, whereas the concentration in exhaled air decreased markedly faster. Thus, apart from blood and urine, saliva also seems suitable for biomonitoring of methanol exposure.  相似文献   

2.
Tetrabromobisphenol A (TBBPA) is widely used as a flame retardant and is suspected to be stable in the environment with possible widespread human exposures. This study reports the characterization of the toxicokinetics of TBBPA in human subjects and in rats. A single oral dose of 0.1 mg/kg TBBPA was administered to five human subjects. Rats were administered a single oral dose of 300 mg TBBPA/kg body weight. Urine and blood concentrations of TBBPA and its metabolites were determined by LC/MS-MS. TBBPA-glucuronide and TBBPA-sulfate were identified as metabolites of TBBPA in blood and urine of the human subjects and rats. In blood, TBBPA-glucuronide was detected in all human subjects, whereas TBBPA-sulfate was only present in blood from two individuals. Maximum plasma concentrations of TBBPA-glucuronide (16 nmol/l) were obtained within 4 h after administration. In two individuals where TBBPA-sulfate was present in blood, maximum concentrations were obtained at the 4-h sampling point; the concentrations rapidly declined to reach the limit of detection (LOD) after 8 h. Parent TBBPA was not present in detectable concentrations in any of the human plasma samples. TBBPA-glucuronide was slowly eliminated in urine to reach the LOD 124 h after administration. In rats, TBBPA-glucuronide and TBBPA-sulfate were also the major metabolites of TBBPA present in blood; in addition, a diglucuronide of TBBPA, a mixed glucuronide-sulfate conjugate of TBBPA, tribromobisphenol A, and the glucuronide of tribromobisphenol A were also present in low concentrations. TBBPA plasma concentrations peaked at 103 micromol/l 3 h after administration and thereafter declined with a half-life of 13 h; maximal concentrations of TBBPA-glucuronide (25 micromol/l) were also observed 3 h after administration. Peak plasma concentrations of TBBPA-sulfate (694 micromol/l) were reached within 6 h after administration. The obtained results suggest absorption of TBBPA from the gastrointestinal tract and rapid metabolism of the absorbed TBBPA by conjugation resulting in a low systemic bioavailability of TBBPA.  相似文献   

3.
A physiologically based pharmacokinetic (PBPK) model of acrylonitrile (ACN) and cyanoethylene oxide (CEO) disposition in humans was developed and is based on human in vitro data and scaling from a rat model (G. L. Kedderis et al., 1996, TOXICOL: Appl. Pharmacol.140, 422-435) for application to risk assessment. All of the major biotransformation and reactivity pathways, including metabolism of ACN to glutathione conjugates and CEO, reaction rates of ACN and CEO with glutathione and tissues, and the metabolism of CEO by hydrolysis and glutathione conjugation, were described in the human PBPK model. Model simulations indicated that predicted blood and brain ACN and CEO concentrations were similar in rats and humans exposed to ACN by inhalation. In contrast, rats consuming ACN in drinking water had higher predicted blood concentrations of ACN than humans exposed to the same concentration in water. Sensitivity and variability analyses were conducted on the model. While many parameters contributed to the estimated variability of the model predictions, the reaction rate of CEO with glutathione, hydrolysis rate for CEO, and blood:brain partition coefficient of CEO were the parameters predicted to make the greatest contributions to variability of blood and brain CEO concentrations in humans. The main contributor to predicted variance in human blood ACN concentrations in people exposed through drinking water was the Vmax for conversion of ACN to CEO. In contrast, the main contributors for variance in people exposed by inhalation were expected to be the rate of blood flow to the liver and alveolar ventilation rate, with the brain:blood partition coefficient also contributing to variability in predicted concentrations of ACN in the brain. Expected variability in blood CEO concentrations (peak or average) in humans exposed by inhalation or drinking water was modest, with a 95th-percentile individual expected to have blood concentrations 1.8-times higher than an average individual.  相似文献   

4.
Deltamethrin (DLT) is a type II pyrethroid insecticide widely used in agriculture and public health. DLT is a potent neurotoxin that is primarily cleared from the body by metabolism. To better understand the dosimetry of DLT in the central nervous system, a physiologically based pharmacokinetic (PBPK) model for DLT was constructed for the adult, male Sprague-Dawley rat that employed both flow-limited (brain, gastrointestinal [GI] tract, liver, and rapidly perfused tissues) and diffusion-limited (fat, blood/plasma, and slowly perfused tissues) rate equations. The blood was divided into plasma and erythrocytes. Cytochrome P450-mediated metabolism was accounted for in the liver and carboxylesterase (CaE)-mediated metabolism in plasma and liver. Serial blood, brain, and fat samples were taken for DLT analysis for up to 48 h after adult rats received 2 or 10 mg DLT/kg po. Hepatic biotransformation accounted for approximately 78% of these administered doses. Plasma CaEs accounted for biotransformation of approximately 8% of each dosage. Refined PBPK model forecasts compared favorably to the 2- and 10-mg/kg po blood, plasma, brain, and fat DLT profiles, as well as profiles subsequently obtained from adult rats given 1 mg/kg iv. DLT kinetic profiles extracted from published reports of oral and iv experiments were also used for verification of the model's simulations. There was generally good agreement in most instances between predicted and the limited amount of empirical data. It became clear from our modeling efforts that there is considerably more to be learned about processes that govern GI absorption and exsorption, transport, binding, brain uptake and egress, fat deposition, and systemic elimination of DLT and other pyrethroids. The current model can serve as a foundation for construction of models for other pyrethroids and can be improved as more definitive information on DLT kinetic processes becomes available.  相似文献   

5.
In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (G.I.) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route. Among the physiological factors, pH, bile, pancreatic juice, and mucus and fluid volume and content can modify dissolution rates, solubility, transit times, and membrane transport of drug molecules. The microbial content of the G.I. tract can significantly affect the reductive metabolism and enterohepatic circulation of drugs and colonic delivery of formulations. The transit time of dosage forms can be significantly different between species due to different dimensions and propulsive activities of the G.I. tract. The lipid/protein composition of the enterocyte membrane along the G.I. tract can alter binding and passive, active, and carrier-mediated transport of drugs. The location and number of Peyer's patches can also be important in the absorption of large molecules and particulate matter. While small animals, rats, mice, guinea pigs, and rabbits, are most suitable for determining the mechanism of drug absorption and bioavailability values from powder or solution formulations, larger animals, dogs, pigs, and monkeys, are used to assess absorption from formulations. The understanding of physiological, anatomical, and biochemical differences between the G.I. tracts of different animal species can lead to the selection of the correct animal model to mimic the bioavailability of compounds in the human. This article reviews the anatomical, physiological, and biochemical differences between the G.I. tracts of humans and commonly used laboratory animals.  相似文献   

6.
1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver, and kidney damage at sufficiently high exposure levels. Two physiologically based pharmacokinetic (PBPK) models of 1,4-dioxane and its major metabolite, hydroxyethoxyacetic acid (HEAA), were published in 1990. These models have uncertainties and deficiencies that could be addressed and the model strengthened for use in a contemporary cancer risk assessment for 1,4-dioxane. Studies were performed to fill data gaps and reduce uncertainties pertaining to the pharmacokinetics of 1,4-dioxane and HEAA in rats, mice, and humans. Three types of studies were performed: partition coefficient measurements, blood time course in mice, and in vitro pharmacokinetics using rat, mouse, and human hepatocytes. Updated PBPK models were developed based on these new data and previously available data. The optimized rate of metabolism for the mouse was significantly higher than the value previously estimated. The optimized rat kinetic parameters were similar to those in the 1990 models. Only two human studies were identified. Model predictions were consistent with one study, but did not fit the second as well. In addition, a rat nasal exposure was completed. The results confirmed water directly contacts rat nasal tissues during drinking water under bioassay conditions. Consistent with previous PBPK models, nasal tissues were not specifically included in the model. Use of these models will reduce the uncertainty in future 1,4-dioxane risk assessments.  相似文献   

7.
An extensive database on the toxicity and modes of action of ethylene glycol (EG) has been developed over the past several decades. Although renal toxicity has long been recognized as a potential outcome, in recent years developmental toxicity, an effect observed only in rats and mice, has become the subject of extensive research and regulatory reviews to establish guidelines for human exposures. The developmental toxicity of EG has been attributed to the intermediate metabolite, glycolic acid (GA), which can become a major metabolite when EG is administered to rats and mice at high doses and dose rates. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to integrate the extensive mode of action and pharmacokinetic data on EG and GA for use in developmental risk assessments. The resulting PBPK model includes inhalation, oral, dermal, intravenous, and subcutaneous routes of administration. Metabolism of EG and GA were described in the liver with elimination via the kidneys. Metabolic rate constants and partition coefficients for EG and GA were estimated from in vitro studies. Other biochemical constants were optimized from appropriate in vivo pharmacokinetic studies. Several controlled rat and human metabolism studies were used to validate the resulting PBPK model. When internal dose surrogates were compared in rats and humans over a broad range of exposures, it was concluded that humans are unlikely to achieve blood levels of GA that have been associated with developmental toxicity in rats following occupational or environmental exposures.  相似文献   

8.
A toxicokinetic model is proposed to predict the time evolution of malathion and its metabolites, mono- and dicarboxylic acids (MCA, DCA) and phosphoric derivatives (dimethyl dithiophosphate [DMDTP], dimethyl thiophosphate [DMTP], and dimethyl phosphate [DMP]) in the human body and excreta, under a variety of exposure routes and scenarios. The biological determinants of the kinetics were established from published data on the in vivo time profiles of malathion and its metabolites in the blood and urine of human volunteers exposed by intravenous, oral, or dermal routes. In the model, body and excreta compartments were used to represent the time varying amounts of each of the following: malathion, MCA, DCA, DMDTP, DMTP, and DMP. The dynamic of intercompartment exchanges was described mathematically by a differential equation system that ensured conservation of mass at all times. The model parameters were determined by statistically adjusting the explicit solution of the differential equations to the experimental human data. Simulations provide a close approximation to kinetic data available in the published literature. When simulating a dermal exposure to malathion, the main route of entry for workers, the model predicts that it takes an average of 11.8 h to recover half of the absorbed dose of malathion eventually excreted in urine as metabolites, compared to 3.2 h following an intravenous injection and 4.0 h after oral administration. This shows that following a dermal exposure, the absorption rate governs the urinary excretion rate of malathion metabolites because the dermal absorption rate is much slower than biotransformation and renal clearance processes. The model served to establish biological reference values for malathion metabolites in urine since it allows links to be made between the absorbed dose of malathion and the time course of cumulative amounts of metabolites excreted in urine. From the no-observed-effect level (NOEL) of 0.61 micromol/kg/day derived from the data of Moeller and Rider (1962), the model predicts corresponding biological reference values for MCA, DCA, and phosphoric derivatives of 44, 13, and 62 nmol/kg, respectively, in 24-h urine samples. The latter were used to assess the health risk of workers exposed to malathion in botanical greenhouses, starting from urinary measurements of MCA and DCA metabolites.  相似文献   

9.
10.
The pharmacokinetics of methanol and formate were characterized in male Fischer-344 rats and rhesus monkeys exposed to methanol vapor concentrations between 50 and 2000 ppm for 6 hr. End-of-exposure blood methanol concentrations were not directly proportional to the atmospheric concentration. The methanol exposures did not cause an elevation in blood formate concentrations. After an intravenous dose of [14C]methanol in rats, metabolism, exhalation, and renal excretion contributed 96.6, 2.6, and 0.8%, respectively, to the elimination of blood methanol concentrations. These values and the calculated renal methanol extraction efficiency (0.007) are nearly identical to those for humans after low doses of methanol. A physiologically based pharmacokinetic model was developed to simulate the in vivo data. In order to simulate the observed blood methanol concentrations in the inhalation studies in rats, a double pathway for methanol metabolism to formaldehyde was used. One path used rodent catalase Km and Vmax values and the other used a smaller Km and Vmax to simulate an enzyme with a higher affinity and lower capacity. The lack of proportionality observed in end-of-exposure blood methanol concentrations may be due to saturation of an enzyme with higher affinity and lower capacity than catalase. The physiologically based pharmacokinetic model was modified to simulate the monkey data and was scaled-up for humans. In order to simulate the monkey blood methanol concentrations, the use of rodent catalase parameters for methanol metabolism was required. This finding suggests that primates and rodents may be similar in the initial step of methanol metabolism after low methanol doses. Previously published human urinary methanol excretion data was successfully simulated by the model. The models were used to predict the atmospheric methanol concentration range over which the laboratory species exhibit quantitative similarities with humans. Below 1200 ppm, all three species exhibit similar end-of-exposure blood methanol concentrations and a linear relationship between atmospheric and blood methanol concentrations. At higher atmospheric concentrations, external and internal methanol concentrations increase desparately, suggesting that delivered dose rather than exposure concentration should be used in interpreting data from high-dose studies.  相似文献   

11.
The assessment of the variability of human responses to foreign chemicals is an important step in characterizing the public health risks posed by nontherapeutic hazardous chemicals and the risk of encountering adverse reactions with drugs. Of the many sources of interindividual variability in chemical response identified to date, hereditary factors are some of the least understood. Physiologically based pharmacokinetic modeling linked with Monte Carlo sampling has been shown to be a useful tool for the quantification of interindividual variability in chemical disposition and/or response when applied to biological processes that displayed single genetic polymorphisms. The present study has extended this approach by modeling the complex hereditary control of alcohol dehydrogenase, which includes polygenic control and polymorphisms at two allelic sites, and by assessing the functional significance of this hereditary control on ethanol disposition. The physiologically based pharmacokinetic model for ethanol indicated that peak blood ethanol levels and time-to-peak blood ethanol levels were marginally affected by alcohol dehydrogenase genotypes, with simulated subjects possessing the B2 subunit having slightly lower peak blood ethanol levels and shorter times-to-peak blood levels compared to subjects without the B2 subunit. In contrast, the area under the curve (AUC) of the ethanol blood decay curve was very sensitive to alcohol dehydrogenase genotype, with AUCs from any genotype including the ADH1B2 allele considerably smaller than AUCs from any genotype without the ADH1B2 allele. Furthermore, the AUCs in the ADH1C1/C1 genotype were moderately lower than the AUCs from the corresponding ADH1C2/C2 genotype. Moreover, these simulations demonstrated that interindividual variability of ethanol disposition is affected by alcohol dehydrogenase and that the degree of this variability was a function of the ethanol dose.  相似文献   

12.
The objective of this study was to develop a biologically based dynamical model describing the disposition kinetics of methyl mercury and its inorganic mercury metabolites in humans following different methyl mercury exposure scenarios. The model conceptual and functional representation was similar to that used for rats but relevant data on humans served to determine the critical parameters of the kinetic behavior. It was found that the metabolic rate of methyl mercury was on average 3 to 3.5 times slower in humans than in rats. Also, excretion rates of organic mercury from the whole body into feces and hair were 100 and 40 times smaller in humans, respectively, and urinary excretion of organic mercury in humans was found to be negligible. The human transfer rate of inorganic mercury from blood to hair was found to be 5 times lower than that of rats. On the other hand, retention of inorganic mercury in the kidney appeared more important in humans than in rats: the transfer rate of inorganic mercury from blood to kidney was 19 times higher than in rats and that from kidney to blood 19 times smaller. The excretion rate of inorganic mercury from the kidney to urine in humans was found to be twice that of rats. With these model parameters, simulations accurately predicted human kinetic data available in the published literature for different exposure scenarios. The model relates quantitatively mercury species in biological matrices (blood, hair, and urine) to the absorbed dose and tissue burden at any point in time. Thus, accessible measurements on these matrices allow inferences of past, present, and future burdens. This could prove to be a useful tool in assessing the health risks associated with various circumstances of methyl mercury exposure.  相似文献   

13.
Trichloroacetic acid (TCA) is a contaminant of drinking water. It induces peroxisome proliferation in livers of rats and mice and is hepatocarcinogenic in the latter species. Previous experimental studies of the kinetics of TCA in the isolated perfused rat liver (IPRL) at two doses have been reported. To gain more insight into the mechanistic processes controlling TCA kinetics in the liver a biologically based kinetic (BBK) model for the IPRL was used to analyze the experimental data. The IPRL was exposed to 25, 250, or 1000 microM TCA for 2 h in a recirculating perfusion system. These doses were not cytotoxic. The BBK model simulated the TCA concentration in perfusion medium and liver, and the biliary excretion of TCA. Separate protein binding studies showed that over 90% of TCA was bound to albumin in the perfusion medium whereas binding in liver homogenate was much lower. Integrating the information on protein binding into the BBK model, the hepatic uptake of TCA and its biliary excretion could be fitted assuming asymmetrical saturable transport at the sinusoidal membrane and linear transport at the bile canalicular membrane. To validate the BBK model, additional washout experiments were conducted in which the perfusion medium was replaced with TCA-free medium after 30 min of exposure of the liver to 1000 microM TCA. This approach illustrates the usefulness of BBK modeling for analyzing experimental kinetic data and gaining insight in kinetic mechanisms controlling the behavior of a chemical in the liver.  相似文献   

14.
15.
A physiologically based pharmacokinetic model was developed for acrylamide (AA) and three of its metabolites: glycidamide (GA) and the glutathione conjugates of acrylamide (AA-GS) and glycidamide (GA-GS). Liver GA-DNA adducts and hemoglobin (Hb) adducts with AA and GA were included as pharmacodynamic components of the model. Serum AA and GA concentrations combined with urinary elimination levels for all four components from male and female mice and rats were simulated from iv and oral administration of 0.1 mg/kg AA or 0.12 mg/kg GA. Adduct formation and decay rates were determined from a 6 week exposure to approximately 1 mg/kg AA in the drinking water and subsequent 6 week nonexposure period. Human urinary excretion data and Hb adduct data were utilized to extrapolate to a human model. The steady-state human liver GA-DNA adduct level from exposure to background levels of AA in the diet was predicted to be between 0.06 and 0.26 adducts per 10(8) nucleotides.  相似文献   

16.
17.
Ugilec 141 is a technical mixture of tetrachlorobenzyltoluenes (TCBTs). It was introduced in the early 1980s as a replacement for polychlorinated biphenyls (PCBs). Based on physicochemical properties and accumulation in the environment, the use of this mixture was prohibited. To gain more insight in the toxicokinetics of these compounds in mammals, rats were exposed to a single iv bolus injection of a mixture of 3 TCBTs. At different time points after dosing, the tissue and blood concentrations of the TCBTs were determined. The adipose tissue is the main storage compartment, followed by skin and muscle. The TCBTs were rapidly eliminated from the liver and the blood, with half lives ranging from 65 to 72 h. Additionally, the tissue concentration data for all 3 TCBTs were analyzed using a physiologically based pharmacokinetic (PB-PK) model. Sensitivity analysis illustrated that the elimination of the TCBTs was not influenced by metabolism only, but also by the blood flow through the liver. Furthermore, the metabolic rates derived from the model were compared to previously reported in vitro metabolic rates. The in vitro values for the TCBTs were only a factor 2 to 3 smaller than the in vivo metabolic rates, indicating the value of in vitro techniques for a priori parameterization of PB-PK models.  相似文献   

18.
Biological activities of flavonoids in vivo are ultimately dependent on the systemic bioavailability of the aglycones as well as their metabolites. In the present study, a physiologically based kinetic (PBK) model was developed to predict plasma concentrations of the flavonoid quercetin and its metabolites and to tentatively identify the regiospecificity of the major circulating metabolites. The model was developed based on in vitro metabolic parameters and by fitting kinetic parameters to literature available in vivo data. Both exposure to quercetin aglycone and to quercetin-4′-O-glucoside, for which in vivo data were available, were simulated. The predicted plasma concentrations of different metabolites adequately matched literature reported plasma concentrations of these metabolites in rats exposed to 4′-O-glucoside. The bioavailability of aglycone was predicted to be very low ranging from 0.004%-0.1% at different oral doses of quercetin or quercetin-4′-O-glucoside. Glucuronidation was a crucial pathway that limited the bioavailability of the aglycone, with 95–99% of the dose being converted to monoglucuronides within 1.5–2.5 h at different dose levels ranging from 0.1 to 50 mg/kg bw quercetin or quercetin-4′-O-glucoside. The fast metabolic conversion to monoglucuronides allowed these metabolites to further conjugate to di- and tri-conjugates. The regiospecificity of major circulating metabolites was observed to be dose-dependent. As we still lack in vivo kinetic data for many flavonoids, the developed model has a great potential to be used as a platform to build PBK models for other flavonoids as well as to predict the kinetics of flavonoids in humans.  相似文献   

19.
Methyl tert-butyl ether (MTBE) is widely used as an additive to gasoline, to increase oxygen content and reduce tailpipe emission of pollutants. Widespread human exposure to MTBE may occur due to leakage of gasoline storage tanks and a high stability and mobility of MTBE in ground water. To compare disposition of MTBE after different routes of exposure, its biotransformation was studied in humans after oral administration in water. Human volunteers (3 males and 3 females, identical individuals, exposures were performed 4 weeks apart) were exposed to 5 and 15 mg 13C-MTBE dissolved in 100 ml of water. Urine samples from the volunteers were collected for 96 h after administration in 6-h intervals and blood samples were taken in intervals for 24 h. In urine, MTBE and the MTBE-metabolites tert-butanol (t-butanol), 2-methyl-1,2-propane diol, and 2-hydroxyisobutyrate were quantified, MTBE and t-butanol were determined in blood samples and in exhaled air in a limited study of 3 male volunteers given 15 mg MTBE in 100 ml of water. MTBE blood concentrations were 0.69 +/- 0.25 microM after 15 mg MTBE and 0.10 +/- 0.03 microM after 5 mg MTBE. MTBE was rapidly cleared from blood with terminal half-lives of 3.7 +/- 0.9 h (15 mg MTBE) and 8.1 +/- 3.0 h (5 mg MTBE). The blood concentrations of t-butanol were 1.82 +/- 0.63 microM after 15 mg MTBE and 0.45 +/- 0.13 microM after 5 mg MTBE. Approximately 30% of the MTBE dose was cleared by exhalation as unchanged MTBE and as t-butanol. MTBE exhalation was rapid and maximal MTBE concentrations (100 nmol/l) in exhaled air were achieved within 10-20 min. Clearance of MTBE by exhalation paralleled clearance of MTBE from blood. T-butanol was cleared from blood with half-lives of 8.5 +/- 2.4 h (15 mg MTBE) and 8.1 +/- 1.6 h (5 mg MTBE). In urine samples, 2-hydroxyisobutyrate was recovered as major excretory product, t-butanol and 2-methyl-1,2-propane diol were minor metabolites. Elimination half-lives for the different urinary metabolites of MTBE were between 7.7 and 17.8 h. Approximately 50% of the administered MTBE was recovered in urine of the volunteers after both exposures, another 30% was recovered in exhaled air as unchanged MTBE and t-butanol. The obtained data indicate that MTBE-biotransformation and excretion after oral exposure is similar to inhalation exposure and suggest the absence of a significant first-pass metabolism of MTBE in the liver after oral administration.  相似文献   

20.
《Inhalation toxicology》2013,25(13):869-899
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 µm in size were examined for endotracheal and and up to 5 µm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号