首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

2.
We report an extensive field-based study of zircon and monazite in the metamorphic sequence of the Reynolds Range (central Australia), where greenschist- to granulite-facies metamorphism is recorded over a continuous crustal section. Detailed cathodoluminescence and back-scattered electron imaging, supported by SHRIMP U–Pb dating, has revealed the different behaviours of zircon and monazite during metamorphism. Monazite first recorded regional metamorphic ages (1576 ± 5 Ma), at amphibolite-facies grade, at ∼600 °C. Abundant monazite yielding similar ages (1557 ± 2 to 1585 ± 3 Ma) is found at granulite-facies conditions in both partial melt segregations and restites. New zircon growth occurred between 1562 ± 4 and 1587 ± 4 Ma, but, in contrast to monazite, is only recorded in granulite-facies rocks where melt was present (≥700 °C). New zircon appears to form at the expense of pre-existing detrital and inherited cores, which are partly resorbed. The amount of metamorphic growth in both accessory minerals increases with temperature and metamorphic grade. However, new zircon growth is influenced by rock composition and driven by partial melting, factors that appear to have little effect on the formation of metamorphic monazite. The growth of these accessory phases in response to metamorphism extends over the 30 Ma period of melt crystallisation (1557–1587 Ma) in a stable high geothermal regime. Rare earth element patterns of zircon overgrowths in leucosome and restite indicate that, during the protracted metamorphism, melt-restite equilibrium was reached. Even in the extreme conditions of long-lasting high temperature (750–800 °C) metamorphism, Pb inheritance is widely preserved in the detrital zircon cores. A trace of inheritance is found in monazite, indicating that the closure temperature of the U–Pb system in relatively large monazite crystals can exceed 750–800 °C. Received: 7 April 2000 / Accepted: 12 August 2000  相似文献   

3.
长江铀矿田位于诸广山复式岩体中南部,是典型的花岗岩型铀矿田.前人采用锆石U-Pb定年方法对赋矿花岗岩进行了年代学研究,但由于全岩和锆石铀含量较高,锆石往往发生了蜕晶化,可能导致锆石U-Pb定年数据散乱,影响锆石U-Pb年龄的可靠性.独居石是花岗岩中广泛存在的含铀副矿物,铀和钍含量均较高,可达10000×10-6,普通铅...  相似文献   

4.
U-Pb geochronology of igneous zircon from rhyolitic host rocks to the Archean Kidd Creek, Geco and Winston Lake massive sulfide deposits, in the Superior Province of Ontario, shows that volcanism, which accompanied mineralization, occupied a narrow time span (2717±2 Ma, 2720±2 Ma and 2723±2 Ma, respectively). Precise ages of hydrothermal monazite, allanite and rutile from alteration zones surrounding the above deposits indicate that these minerals crystallized 40–70 million years after volcanism. Monazite from Kidd Creek mine is 2659±3 Ma old, in agreement with spatially associated 2664±25 Ma old rutile. Monazite from a biotite schist at Geoco mine gives a similar age of 2661±1 Ma. However, monazite from a sericite schist, which hosts the ore at Geco mine, is 2675±2 Ma old. Abraded large monazite grains from three units in the Winston Lake deposit are coeval with biotite crystallization and record an age of 2677±2 Ma, approximately the same as monazite in the sericite schist at Geco. Data points from allanite fractions from both the Winston Lake and Geco deposits fall on a Pb-Pb isochron that gives an age of 2672±5 Ma. Rutile from Winston Lake gives a younger age of 2651±6/-2 Ma and may date retrograde alteration of biotite to chlorite. The ca. 2676 Ma age of monazite from Winston Lake and in the sericite schist at Geco mine probably dates a regional metamorphic event that affected most of the southern Superior Province. The ca. 2660 Ma old monazite in the biotite schist at Geco mine and in the chlorite-sericite alteration at Kidd Creek may date later K-metasomatism caused by metamorphically derived fluids that were focussed along old fault structures. Such fluids were also responsible for local sulfide remobilization. Monazite and rutile are spatially associated with chlorite and sericite alterations at Kidd Creek. Their young ages indicate that these originally syngenetic mineral assemblages may have been significantly affected by regional metamorphism. Formation of monazite at all three deposits studied was a result of significant REE remobilization during metamorphism. The discrete character of syn-metamorphic hydrothermal activity in different units of the same deposit, as well as its synchroneity among different, widely separated deposits, requires a mechanism for episodic injection of heat and fluid into the crust on a regional scale. These activities are broadly coeval with, and probably related to, plutonism within adjacent metasedimentary subprovinces and middle to lower crustal metamorphism in the Superior Province.  相似文献   

5.
The Erdenetuin-Obo porphyry Cu-Mo deposit was formed at the final stage of development of magmatic activity occasionally manifested in the Late Permian-Early Triassic in the period of at least 40 Ma. Early plutonic (host) and late ore-bearing porphyry intrusive complexes were formed in that period. The plutonic complex is multiphase, while the porphyry complex is polyrhythmical and multiphase within rhythms. The obtained data on the U-Pb isotopic composition (SHRIMP II) of zircons from unaltered rocks of the ore field are discussed: gabbro, diorite, and granodiorite of the plutonic complex and granodiorite-porphyry I and II of the first and second rhythms of the ore-bearing complex, respectively. Zircons of different age levels and genotypes were identified in the course of performed investigations. Gabbro are dominated by postmagmatic (superimposed) zircons with the datings of 239–225 Ma. The age of xenogenic zircon brought out from the basement rocks is estimated at 1146 ± 11 Ma. Zircons occur as magmatic and postmagmatic (superimposed) minerals dated 252–247, 244–233 Ma in diorite and 244–242, 239–224 Ma in granodiorite. The ages of postmagmatic zircons from diorite are partially overlapped by datings of magmatic zircons from granodiorite and granodiorite-porphyry. In the porphyry complex, the datings of magmatic zircons are 240–234 and 222–220 Ma in granodiorite-porphyries I and II, respectively. There are also inherited zircons with datings coinciding with those of magmatic zircons from precursor intrusive rocks. Datings of such zircons are 249–241 and 257–231 Ma for granodiorite-porphyries I and II, respectively. As a whole, zircon datings in all studied igneous rocks forming a virtually uninterrupted range in the period of 257–220 Ma allow us to suggest the relation of the ore magmatic system to the long-living constantly active deep source occasionally delivering melt to the upper levels.  相似文献   

6.
The lead isotopic composition of 33 sulfide samples from orebodies of the Sukhoi Log deposit was studied by high-precession MC-ICP-MS with a precision of ±0.02% (±2SD from 120 analyses of the SRM 981 standard sample). The deposit is located in the Bodaibo gold mining district in the northern Baikal-Patom Highland. Gold mineralization is hosted in Neoproterosoic black slates. Variations of lead isotope ratios of the Sukhoi Log sulfides are generally typical of Phanerozoic deposits and ore fields. They are significant for 206Pb/204Pb (17.903–18.674), moderate for 208Pb/204Pb (37.822–38.457), and relatively narrow for 207Pb/204Pb (15.555–15.679). In the Pb-Pb isotope diagrams, the data points of pyrite and galena constitute a linear trend. The points corresponding to pyrite from metasomatic ore occupy the left lower part of the trend. Galena from late gold-quartz veins shows more radiogenic Pb, and corresponding data points are located in the upper part of the trend. According to the Stacey-Kramers model, the end points of the trend, which is regarded as a mixing line, have μ2 = 9.6 and μ2 = 13.2 and model Pb-Pb ages 455 and 130 Ma, respectively. The isotope characteristics of ore lead, their relationships in pyrite and galena, and the mixing trend of Pb isotopic compositions are clearly tied to two Paleozoic stages in the formation of the Sukhoi Log deposit (447 ± 6 and 321 ± 14Ma) and testify to the leading role of crustal sources, which are suggested as being the Neoproterozoic black-shale terrigenous-carbonate rocks.  相似文献   

7.
The intrusive rocks associated with the large Nezhdaninka gold deposit (Au > 470 t) hosted in the Permian carbonaceous terrigenous sequence have been dated on zircon and rock-forming minerals with precision U-Pb (ID-TIMS) and Rb-Sr methods. The lamprophyre of the dike complex that occurs in the ore field and spatially is related to gold mineralization has concordant U-Pb zircon age (121 ± 1 Ma) and the same isochron Rb-Sr age (121.0 ± 2.8 Ma). The concordant U-Pb zircon age of granodiorite that dominates in the Kurum pluton is 94 ± 1 Ma, whereas the Rb-Sr isochron age of various intrusive rocks from this pluton is 1–4 Ma younger. This difference is caused by long-term cooling of the Kurum pluton and later closure of Rb-Sr isotopic system of biotite (300–350°C) and other rock-forming minerals as compared with U-Pb isotopic system of zircon (~ 900°C). The Rb-Sr age of quartz diorite from the Gel’dy group of stocks (92.6 ± 0.8 Ma) coincides within uncertainty limits with the age of the Kurum pluton. Thus, the rocks pertaining to two epochs of magmatic activity, which developed in the South Verkhoyansk Foldbelt and divided by a time span of 25–28 Ma, are documented in the Nezhdaninka ore field. Taking into account that the age of gold mineralization is no less than 120 Ma, the data obtained allow us to specify the previously proposed formation model of the Nezhdaninka deposit. These data give grounds to rule out the Late Cretaceous Kurum pluton and the Gel’dy group of stocks from constituents of the ore-magmatic system, and to suggest that an Early Cretaceous deep-seated magma source existed beneath the deposit. Along with host terrigenous rocks, this magma source participated in the supply of matter to the hydrothermal system. The Nd, Sr, and Pb isotopic systematics of igneous rocks and ore mineralization in the Nezhdaninka ore field show that the Early and Late Cretaceous magma sources were formed in the Precambrian crust dated at ~1.8 Ga.  相似文献   

8.
Nepheline-bearing gneisses from the 75 km2 Tambani body in the Mozambique Belt of southern Malawi, are miaskitic biotite-nepheline monzodiorites, reflecting an absence of K-feldspar, alkali amphiboles or pyroxenes, and contain euhedral zircon megacrysts up to 5 cm across. The zircons contain U = 1–1,860 ppm, Th = 0–2,170 ppm and Y = 400–1,100 ppm, and very low concentrations of all other measured trace elements except Hf (HfO2 = 0.53–0.92 wt. %). Cathodoluminescence images reveal oscillatory sector growth zoning and no evidence for xenocrystic cores, indicating that the zircons represent primary magmatic crystallization products that have survived amphibolite grade metamorphism. U-Pb isotopic analyses (by TIMS) yield an upper intercept age of 730 ± 4 Ma (MSWD = 1.7), which we interpret as the time of magmatic crystallization of the zircons. This is coincident with 11 SHRIMP spot analyses, which yield a mean age of 729 ± 7 Ma (MSWD = 0.37). Metamorphism, at 522 ± 17 Ma as suggested by monazite, caused partial Pb-loss during local recrystallization of zircon. Lu-Hf isotopic data for three whole-rock samples of nepheline-bearing gneiss are collinear with those for zircon megacrysts, and correspond to an age of 584 ± 17 Ma (MSWD = 0.37. We interpret the Lu-Hf array to represent a mixing line defined by the Hf isotopic signature of primary zircon and that of the rock-forming minerals reset during metamorphic (re-)crystallization; hence the 584 Ma age is likely geologically meaningless. Given the well-defined association of nepheline syenites (and phonolitic volcanic equivalents) with continental rifting, we suggest that the Tambani body represents a magmatic product formed at 730 Ma during the break-up of the Rodinia supercontinent. The 522 Ma age is akin to other Pan-African metamorphic ages that record collisional suturing events during the final assembly of Gondwana. Zircon-bearing nepheline gneisses thus preserve a record of intra-continental rifting and of continental collision in southern Malawi.  相似文献   

9.
In unaltered volcanogenic massive sulfide (VMS) ore deposits, variable Rb/Sr ratios in the ore mineral permits application of the Rb-Sr isotopic method to directly date the time of ore formation. In contrast, post-crystallization deformation and metamorphism would open the system to metamorphic fluids that would alter elemental ratios. To test whether the Rb-Sr isotopic systematics in the ore minerals had preserved the formation time in the ∼800 Ma metamorphosed VMS ores within the ∼1 Ga Ambaji-Sendra arc terrain, Rajasthan, NW India, common sulfides, pyrite and sphalerite from the Pipela Cu-Zn prospect, were analyzed for their geochemistry and Rb-Sr isotopic systematics. Trace and rare earth elements in these minerals are resident probably at crystal defects, whereas all inclusions (including those from metamorphic fluids) were removed by a simple crush leach method. Results of direct dating by the Rb-Sr method to the hydrothermal pyrite yielded an isochron age of 1025±76 Ma with an initial Sr ratio of 0.7051±0.0006, similar to previously determined zircon U-Pb age of 987 Ma from associated rhyolites. This suggests the applicability of the crush leach method to date formation time of metamorphosed pyrite ores.  相似文献   

10.
胡国辉  张琪琪  李建锋  张拴宏 《地球科学》2020,45(11):3962-3981
辽东地区中生代岩浆活动强烈,伴随着大规模的金成矿作用.五龙金矿是该地区规模最大的典型石英脉型金矿床,金矿体主要赋存于侏罗纪片麻状花岗岩和早白垩世花岗闪长岩中.因此,该地区中生代岩浆活动对金成矿作用具有显著的制约.选择辽东五龙金矿区片麻状花岗岩和三股流岩体进行岩相学、锆石和独居石U-Pb年代学研究.3个片麻状花岗岩的岩性均为黑云母二长花岗岩,矿物发生强烈的韧性变形,呈定向排列,锆石U-Pb年龄分别为159.2±1.8 Ma、160.2±1.8 Ma和156.1±1.2 Ma,三股流黑云母二长花岗岩样品的锆石U-Pb年龄为123.8±1.2 Ma.花岗岩样品中的独居石矿物学特征和化学组成显示均为岩浆成因,3个片麻状花岗岩的独居石年龄分别为158.1±1.9 Ma、157.5±1.4 Ma和153.5±1.4 Ma,三股流岩体的独居石U-Pb年龄为123.4±1.5 Ma.晚侏罗世片麻状花岗岩的独居石年龄比锆石年龄略小1.1~2.7 Ma,其中2个样品的冷却速率分别为55.56℃/Ma和57.69℃/Ma,表明晚侏罗世岩浆在高温阶段为一快速冷却作用过程,可能经历了快速的地壳抬升事件.锆石和独居石的U-Pb年龄结果表明片麻状花岗岩和三股流岩体分别形成于侏罗纪晚期和白垩纪早期,结合已有研究资料,辽东五龙矿集区主要发生了晚侏罗世和早白垩世两期岩浆活动,与古太平洋板块向欧亚大陆俯冲作用有关,并伴随着早白垩世金矿的形成.   相似文献   

11.
In the Rogaland–Vest Agder terrain of the Sveconorwegian Province of SW Norway, two main Sveconorwegian metamorphic phases are reported: a phase of regional metamorphism linked to orogenic thickening (M1) and a phase of low-pressure thermal metamorphism associated with the intrusion of the 931 ± 2 Ma anorthosite-charnockite Rogaland igneous complex (M2). Phase M1 reached granulite facies to the west of the terrane and M2 culminated locally at 800–850 °C with the formation of dry osumilite-bearing mineral associations. Monazite and titanite U-Pb geochronology was conducted on 17 amphibolite- to granulite-facies orthogneiss samples, mainly from a suite of 1050 +2/−8 Ma calc-alkaline augen gneisses, the Feda suite. In these rocks, prograde negatively discordant monazite crystallized during breakdown of allanite and titanite in upper amphibolite facies at 1012–1006 Ma. In the Feda suite and other charnockitic gneisses, concordant to slightly discordant monazite at 1024–997 Ma probably reflects breakdown of biotite during granulite-facies M1 metamorphism. A spread of monazite ages down to 970 Ma in biotite ± hornblende samples possibly corresponds to the waning stage of this first event. In the Feda suite, a well defined monazite growth episode at 930–925 Ma in the amphibolite-facies domain corresponds to major clinopyroxene formation at the expense of hornblende during M2. Growth or resetting of monazite was extremely limited during this phase in the granulite-facies domain, up to the direct vicinity of the anorthosite complex. The M2 event was shortly followed by cooling through ca. 610 °C as indicated by tightly grouped U-Pb ages of accessory titanite and titanite relict inclusions at 918 ± 2 Ma over the entire region. A last generation of U-poor monazite formed during regional cooling below 610 °C, in hornblende-rich samples at 912–904 Ma. This study suggests: (1) that monazite formed during the prograde path of high-grade metamorphism may be preserved; (2) that monazite ages reflect primary or secondary growth of monazite linked to metamorphic reactions involving redistribution of REEs and Th, and/or fluid mobilisation; (3) that the U-Pb system in monazite is not affected by thermal events up to 800–850 °C, provided that conditions were dry during metamorphism. Received: 9 January 1997 / Accepted: 15 April 1998  相似文献   

12.
ABSTRACT The products of metamorphic fluid flow are preserved in zones within the marbles and metamorphosed semipelites of the Upper Calcsilicate Unit in the granulite portion of the Late Palaeoproterozoic Reynolds Range Group, northern Arunta Block, central Australia. The zones of retrogression, characterized by minerals such as wollastonite, grossular and clinohumite, local resetting of oxygen isotopic compositions and local major element metasomatism, were channelways for water-rich fluids derived from granulite facies metapelites. U–Th–Pb isotopic ages measured by the SHRIMP ion microprobe on zircon and monazite from a granulite facies semipelite, an early semiconcordant aluminous quartz-rich fluid-flow segregation and a late discordant quartz-rich segregation record some of the extended thermal history of the area. Zircon cores from the semipelite show its likely protolith to be an igneous rock 1812 ± 11 Ma old, itself derived from a source containing zircon as old as 2.2 Ga. Low-Th/U overgrowths on the zircon grew during granulite facies metamorphism at 1594 ± 6 Ma. Monazite cooled to its blocking temperature at 1576 ± 8 Ma. Zircon cores from the semiconcordant segregation are dominantly >2.3 Ga old, indicating that the source of the fluids was not the particular metamorphosed semipelite studied. Two generations of low-Th/U overgrowths on the zircon give indistinguishable ages for the older and younger of 1589 ± 8 and 1582 ± 8 Ma, respectively. The monazite age is the same, 1576 ± 12 Ma. Zircon from the late discordant segregation gave 1568 ± 4 Ma. Fluid flow occurred for at least 18 ± 3 (σ) Ma and ended 26 ± 3 (σ) Ma after the peak of metamorphism, suggesting a very slow cooling rate of ~3°C Ma–1. The last regional high-grade metamorphism in the Reynolds Range occurred at ~1.6 Ga, not ~1.78 Ga as previously thought. The high-grade event at ~1.78 Ga is a separate event that affected only the basement to the Reynolds Range Group.  相似文献   

13.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   

14.
柴北缘高压-超高压变质带西段鱼卡地区变泥质岩中夹有榴辉岩透镜体,已有的研究显示变泥质岩的变质程度也达到了榴辉岩相,并与榴辉岩一起经历了高压-超高压变质作用,是柴北缘曾经历早古生代大陆深俯冲作用的直接证据,也是研究柴北缘大陆深俯冲过程重要的岩石"探针"。本文选择柴北缘西段鱼卡超高压变质单元中的3件蓝晶石榴白云母石英片岩HP变泥质岩样品分别进行了SHRIMP、LA-ICP-MS锆石和原位独居石U-Pb定年。样品Q06-1-2的锆石给出了920±18Ma(MSWD=1.3)的加权平均年龄,其CL图像特征和极低的Th/U比显示其为变质年龄,代表了与罗迪尼亚超大陆碰撞拼合相关的变质事件。样品A03-11-2.2的锆石给出了450±7Ma(MSWD=0.2)的年龄,认为其代表变泥质岩的榴辉岩相变质年龄。样品A03-14-11的薄片原位独居石定年给出了439±8Ma(MSWD=0.072)的加权平均年龄,结合岩相学观察,认为其可能为榴辉岩相峰期之后的早期退变质年龄。这些资料显示柴北缘鱼卡地区早古生代大陆深俯冲的时限为440~450Ma。结合已有研究资料,鱼卡高压变泥质岩记录了新元古代早期和早古生代两期变质事件,进一步证明了柴北缘地区经历了格林威尔期和早古生代两期造山事件  相似文献   

15.
陕西省镇安县桂林沟斑岩型钼矿床位于南秦岭多金属成矿带内,其成矿围岩主要为细粒花岗岩、钾长花岗岩和蚀变的粗粒花岗岩。本文通过对桂林沟斑岩型钼矿床中辉钼矿Re-Os同位素定年以及围岩中锆石U-Pb年代学研究,旨在探讨成矿成岩的关系及其构造意义。结果表明,6件辉钼矿的Re-Os同位素年龄在195.9~198.5Ma之间,加权平均年龄为197.2±1.3Ma,表明桂林沟钼矿形成于早侏罗世。围岩细粒花岗岩、钾长花岗岩和粗粒花岗岩的锆石U-Pb年龄分别为199±1.4Ma、201±3.1Ma和198±11Ma,这说明其成岩和成矿年龄基本一致。值得注意的的是,桂林沟钼矿床的形成年龄不同于前人已报导的秦岭钼矿的三个主要成矿期,即238~213Ma、145~126Ma和116~110Ma,其稍晚于第一成矿期。200~190Ma可能代表了秦岭成矿带一期尚未认识的重要成矿事件,对于南秦岭找矿具有重要意义。该期钼矿形成于秦岭印支期碰撞之后,是在造山带垮塌引起的岩浆-热液事件过程中形成的。  相似文献   

16.
河南省洛宁县铁炉坪大型脉状银铅矿床地处华北陆块南缘熊耳山中生代变质核杂岩构造西部,由一组主要的NNE走向陡倾斜矿脉和一组次要的NW走向陡倾斜矿脉有规律地组成.矿脉以条带状、角砾状和晶洞-晶簇-梳状三种主要形式多阶段充填而成,按照主要矿脉的矿物共生序列可以分为四个阶段:铁镁碳酸盐阶段(I)、烟灰色石英-贱金属硫化物-银矿...  相似文献   

17.
Monazite is accepted widely as an important U-Pb geochronometer in metamorphic terranes because it potentially preserves prograde crystallization ages. However, recent studies have shown that the U-Pb isotopic system in monazite can be influenced by a variety of processes that partially obscure the early growth history. In this paper, we attempt to interpret complex monazite and xenotime U-Pb data from three Paleoproterozoic granite dikes exposed in the Grand Canyon. Single-crystal monazite analyses from an unfoliated granite dike spread out along concordia from the crystallization age of the dike (defined by U-Pb zircon data to be 1685 ± 1 Ma) to 1659 ± 2 Ma, a span of 26 million years. Back-scattered electron (BSE) imaging reveals that magmatic domains within most crystals from this sample are truncated by secondary domains associated with prominent embayments at the grain margin. Fragments of a single crystal yield contrasting, concordant dates and fragments from the edges and tips of crystals yield the youngest dates. Based on these observations we suggest that the secondary domains formed at least 26 million years after the crystal formed. Monazite and xenotime dates from the second sample, a sheared dike that cross-cuts the previous dike, spread out along concordia over 16 million years and range up to 2.4% normally discordant. Again, BSE imaging reveals secondary domains that truncate both magmatic zoning and xenocrystic cores. Fragments sliced from specific domains of a previously imaged monazite crystal demonstrate that the secondary domain is 13 million years younger than the core domain. Textures revealed in BSE images suggest that the secondary domains formed by fluid-mineral interaction. Normal discordance appears to result from both radiation damage accumulated at temperatures below 300 °C and water-mineral interaction. Monazite data from the third sample exhibit dispersion in both the 207Pb/206Pb dates (1677–1690 Ma) and discordance (+ 1.6% to − 3.1%). Reverse discordance in these monazites cannot be explained by incomplete dissolution or excess (thorogenic) 206Pb. Sliced fragments from several crystals reveal dramatic intragrain U-Pb disequilibrium that does not correlate with either Th or U concentration or position within the crystal. We suggest that reverse discordance resulted from mechanisms that involve exchange or fractionation of elemental U or elemental Pb, and that neither the U-Pb dates nor the 207Pb/206Pb dates are reliable indicators of the rock's crystallization age. Given the large number of processes proposed in the recent literature to explain monazite U-Pb systematics from rocks of all ages, our results can be viewed as another cautionary note for single-crystal and multi-crystal monazite geochronometry. However, we suggest that because individual crystals can preserve a temporal record of primary and secondary monazite growth, micro-sampling of individual monazite crystals may provide precise absolute ages on a variety of processes that operate during the prograde, peak and/or retrograde history of metamorphic terranes. Received: 9 June 1996 / Accepted: 18 October 1996  相似文献   

18.
New geochronological (U-Pb, Pb-LS, Sm-Nd) studies were carried out for minerals from metamorphic rocks (aluminous plagiogneisses with sillimanite (kinzigites) and potassium shadow migmatites) to establish the sequence of metamorphic events in the Irkut block of the Prisayan marginal uplift of the Siberian platform basement. Obtained data permit the distinguishing of two main stages of regional metamorphism under the granulite and amphibolite facies conditions: 2480–2560 and 1860–1900 Ma. New age data in general are consistent with previously published zircon estimates of the Neoarchean and Paleoproterozoic ages of the granulite-facies metamorphism of the Irkut block. This gives grounds to consider the geochronological studies of garnet and monazite as promising tool for distinguishing age boundaries of metamorphic transformations in the areas of polycyclic evolution.  相似文献   

19.
多期变质变形事件的精确年代限定是造山构造年代学研究的热点问题之一。本文尝试运用面理弯切轴测量技术,结合石榴石Lu-Hf和原位独居石U-Pb定年,厘定北祁连托勒牧场地区石榴石和斜长石斑晶记录的两期构造变形事件:石榴石斑晶生长记录的早期构造变形事件年代为512.3±2.7Ma;斜长石斑晶生长记录的晚期构造变形事件年代不早于481.0±2.3Ma,并推断该期构造变形水平挤压主应力方向为北东-南西。斜长石斑晶内未发现独居石,用于年代学测试的独居石颗粒均位于斜长石斑晶外基质中。显微构造分析认为,独居石生长不早于斜长石斑晶。481.0±2.3Ma的独居石U-Pb年龄,应为斜长石斑晶所记录构造变形的时代下限。结合前人锆石U-Pb定年和Hf同位素研究结果分析认为,获得的512.3±2.7Ma石榴石-全岩Lu-Hf等时线年龄,代表了祁连洋俯冲过程中石榴石的生长时间,后期变质变形作用未对石榴石的Lu-Hf同位素体系产生明显影响。结合显微构造分析,石榴石Lu-Hf定年可为早期构造变形提供有效年代学制约。  相似文献   

20.
The Gruinard Bay area of the mainland Lewisian complex comprises a metamorphosed suite of Archaean trondhjemites and minor granites enclosing remnants of older tonalitic gneiss and mafic to ultramafic enclaves. The U-Pb zircon dating yields ages of 2731 ±14 Ma and 2728 ±2 Ma for two trondhjemite and 2732 ±4 Ma for one granite sample, also revealing the presence of large amounts of inherited xenocrystic zircons. Although the region has been pervasively overprinted by retrogressive events in amphibolite to greenschist facies, the textural relations between biotite, hornblende, quartz and titaniferous minerals indicate that these minerals are pseudomorphs of pyroxene and high-Ti amphibole formed in hornblende-granulite facies. Structural relations link this metamorphism to a steep northeast-trending fabric coeval with the intrusion of the trondhjemites, dated at 2730 Ma. Dating of zircon in amphibolite and tonalite enclaves yields complex internal isotopic relations with apparent ages ranging from 2825 to 2740 Ma. This age range reflects new growth during the 2730 Ma metamorphic/metasomatic events, superimposed on older zircon phases which include combinations of xenocrystic cores, and magmatic and/or metamorphic growth phases whose mode of formation cannot clearly be resolved by imaging techniques (e.g. cathodoluminescence) alone. A pegmatitic vein that escaped the D3 strain and related isotopic disturbances yields a precise age of 2792 ±2 Ma, which constrains to some degree the earliest orogenic events in the area. Age relationships displayed in the central block at Scourie–Badcall, and in the Gruinard Bay area indicate that petrogenetic events in both areas were comparable about 2800 Ma and that both areas underwent trondhjemitic magmatism about 2730 Ma. In contrast, at Gruinard Bay there is no isotopic evidence for a period of high-grade metamorphism and magmatism at 2490–2480 Ma that drastically affected the Scourie block indicating that at this stage the two regions occupied different levels of the crust. Received: 23 October 1997 / Accepted: 20 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号