首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
以直接氮化法制备的AlN粉体为原材料,添加质量分数为5% 的Y2O3做烧结助剂,采用热压烧结工艺制备AlN陶瓷.研究烧结温度和压力对AlN陶瓷显微结构、相对密度和热导率的影响.结果表明:随着烧结温度的升高,AlN陶瓷的晶粒长大,第二相逐渐增多,热导率和相对密度均为先增大后减小;随着压力的增大,AlN陶瓷的晶粒逐渐细小,气孔率减少,热导率和相对密度都显著增大.确定AlN陶瓷的最优烧结条件如下:温度为1800℃,压力为50 MPa.  相似文献   

2.
低温烧结AlN陶瓷的微结构和热导率   总被引:3,自引:0,他引:3  
采用CaF2,Y2O3和Li2CO3做添加剂,在低温下制备了高热导率的AlN陶瓷,通过SEM,TEM和XRD研究了AlN陶瓷在烧结过程中微结构及晶格常数的变化及其对热导率的影响。研究发现,当使用CaF2-Y2O3做添加剂时,液相对晶粒浸润性较差。不利于AlN晶格的纯化。而添加Li2O-CaF2-Y2O3的AlN陶瓷在烧结温度之前已经完成了液相的重新分布,液相与AlN晶粒之间有较好的浸润性,这促进了AlN陶瓷的致密化和AlN晶格的纯化,有利于获得较高的热导率。  相似文献   

3.
放电等离子烧结制备透明AlN陶瓷   总被引:3,自引:3,他引:0  
采用放电等离子烧结(spark plasma sintering,SPS)技术,添加不同含量CaF2为烧结助剂,成功制备了透明氮化铝(AlN)陶瓷.SPS技术具有烧结快速,烧结体致密度高的特点,是制备透明AlN的有效方法.CaF2的加入量的提高,有利于烧结体的致密度和透过率的提高.当CaF2加入量为3%(质量分数)时,烧结体致密度不再继续提高,但仍有利于透过率的提高,此时烧结体透过率最高为54.7%.SEM、XRD、TEM和EDX结果表明烧结体具有很高的致密度、纯度,均匀的晶粒形状和尺寸,晶界及三角晶界处观察不到第二相的存在,从而保证了烧结体良好的光学性能.  相似文献   

4.
随着通信行业的发展,尤其是5G商用时代的来临,微波介质陶瓷的开发与探索成了近年来的研究热点.目前通常采用常压固相烧结的方式来制备微波介质陶瓷,但烧结温度较高、加热速度慢,且烧结时间过长,不仅会导致资源的损耗,还可能导致晶粒的异常长大.为了降低陶瓷材料的烧结温度,通常会添加烧结助剂,如B2 O3、CuO等,但加入烧结助剂会引入第二相从而影响微波介电性能.作为一种高效的烧结方法,微波烧结技术是在烧结过程中通过微波与材料粒子的相互作用或微波与基本微观结构耦合产生的热量进行加热,不仅能降低烧结温度、缩短烧结时间,还能改善材料的显微组织,因此,近年来微波烧结成为研究者关注的焦点.采用微波烧结制备的微波介质陶瓷在各个领域中都有应用,如Mg2 TiO4陶瓷用于多层电容器和微波谐振器,BaTiO3陶瓷用于多层陶瓷电容器(MLCC)和随机存取存储器(RAM),MgTiO3陶瓷用于微波滤波器、通信天线和微波频率全球定位系统,TiO2陶瓷用于电容器和低温共烧陶瓷基板等.不仅如此,采用微波烧结制备的微波介质陶瓷还表现出优异的化学稳定性和力学性能,如LiAlSiO4基陶瓷、MgO-B2 O3-SiO2基陶瓷等在多层陶瓷基板与微波集成电路中都有广泛的应用.微波烧结技术为制备优异的材料提供了可能,还可用于在各种粉末的制备,实现性能的进一步提升.本文综述了微波烧结制备微波介质陶瓷的研究进展,总结了常规烧结和微波烧结对材料性能的影响,并指出采用微波烧结制备的微波介质陶瓷目前存在的问题与发展趋势.  相似文献   

5.
在5.0 GPa、1300-1800℃条件下不使用烧结助剂高压烧结制备了AlN陶瓷,研究了烧结温度和烧结时间对AlN高压烧结体微观结构和残余应力的影响.结果表明:高压烧结制备AlN陶瓷能有效地降低烧结温度和缩短烧结时间,在5.0 GPa/1400℃/50 min条件下AlN烧结体表现出穿晶断裂模式;将烧结温度提高到1800℃在AlN陶瓷中形成了单相多晶等轴晶粒组织;在5.0 GPa/1700℃/125 min条件下AlN陶瓷内部存在2.0GPa的残余压应力,其原因是在高压烧结AlN陶瓷出现了晶格畸变.  相似文献   

6.
在5.0 GPa、1300-1800℃条件下不使用烧结助剂高压烧结制备了AlN陶瓷, 研究了烧结温度和烧结时间对AlN高压烧结体微观结构和残余应力的影响. 结果表明: 高压烧结制备AlN陶瓷能有效地降低烧结温度和缩短烧结时间, 在5.0 GPa /1400℃/50 min条件下AlN烧结体表现出穿晶断裂模式; 将烧结温度提高到1800℃在AlN陶瓷中形成了单相多晶等轴晶粒组织; 在5.0 GPa/1700℃/125 min条件下AlN陶瓷内部存在2.0GPa的残余压应力, 其原因是在高压烧结AlN陶瓷出现了晶格畸变  相似文献   

7.
AlN陶瓷的高压烧结研究   总被引:1,自引:0,他引:1  
以自蔓延高温合成的AlN粉体为原料,用六面顶压机在高压(3.1~5.0GPa)下实现了未添加烧结助剂的AlN陶瓷体的烧结.研究了烧结工艺参数对AlN烧结性能的影响.用XRD、SEM对AlN高压烧结体进行了表征.研究表明:高压烧结能够有效降低AlN陶瓷的烧结温度并缩短烧结时间,烧结体的结构致密.在5.0GPa/1300℃条件下高压烧结50min的AlN陶瓷的相对密度达94.9%.在5.0GPa/1700℃/125min条件下制备的AlN陶瓷晶格常数比其粉体减小了约0.09%.  相似文献   

8.
空心阴极等离子烧结AlN陶瓷   总被引:1,自引:0,他引:1  
将空心阴极效应运用于AlN陶瓷的烧结,选用自蔓延高温合成的AlN粉体为原料,用Y2O3-CaO-Li2O作为烧结助剂,制备出了致密度高,导热性能好的AlN陶瓷.在添加5.5wt%的Y2O3-CaO-Li2O(Y2O3:Li2O:CaO=44:6:5wt%)作为烧结助剂,在1700℃,保温3h的烧结条件下,获得相对密度为98.89%,热导率为93.8 W/(m·K)AlN烧结体.烧结体的断口SEM照片显示烧结试样的晶粒生长发育完善,晶粒轮廓清晰呈尖锐的多面体形状,晶粒大小均匀,气孔和晶界相少,断裂模式为穿晶断裂.TEM表明:晶界相少,且大部分都缩至三角晶界,AlN颗粒与颗粒接触紧密.  相似文献   

9.
高频回旋管微波烧结纳米陶瓷研究   总被引:1,自引:0,他引:1  
在高频回旋管微波烧结系统上进行纳米陶瓷烧结研究,制备出氧化锆单元及二元纳米陶瓷样品,对不同烧结工艺制备出的样品做了密度、硬度测试,利用XRD和扫描电镜分析陶瓷样品晶粒特性,以摸索适宜的烧结工艺.探讨了高频回旋管微波烧结纳米陶瓷的可行性.  相似文献   

10.
无水乙醇注浆成型制备YAG透明陶瓷   总被引:3,自引:0,他引:3  
以无水乙醇作为分散介质,采用注浆成型工艺和真空烧结技术制备了光学质量良好的YAG透明陶瓷.双面抛光、厚度为3mm的YAG透明陶瓷样品(烧结温度1800℃)在可见光范围内的直线透过率为79%左右,在近红外波段的透过率为80%左右,接近理论透过率84%.样品的平均晶粒尺寸约为30μm,晶界处和晶粒内部均无杂质和第二相存在,也几乎没有气孔的残留.采用无水乙醇做分散剂进行注浆成型是一种很有发展潜力的透明陶瓷成型方法.  相似文献   

11.
碳材料具有优异的吸波性能, 但是难以在陶瓷基体中均匀分散。本研究通过酚醛树脂裂解的方法在氮化铝陶瓷基体中引入碳, 研究了酚醛树脂的添加量对氮化铝陶瓷烧结性能、微观形貌、导热性能和介电性能的影响。研究发现, 酚醛裂解形成的碳能够有效促进氮化铝陶瓷的致密化进程, 降低烧结温度。当酚醛树脂含量为3wt%, 1700℃烧结后陶瓷的致密度达到99.26%。此外, 裂解碳的引入能够显著提高材料的导热性能, 并在材料的气孔中和氮化铝的晶界处形成碳膜, 从而显著提高材料的介电性能。当酚醛树脂含量为6wt%时, 材料热导率达135.1W/(m·K), 在X波段的介电损耗为0.3, 表明材料具有良好的微波衰减能力, 有望应用于大功率的微波电真空器件中。  相似文献   

12.
(YCa)F3助烧AlN陶瓷的显微结构和热导率   总被引:2,自引:0,他引:2  
采用(CaY)F_3为助烧结剂,低温烧结(1650℃, 6h)制备出热导率为208W/m·K的AIN陶瓷,在烧结过程中,热导率随保温时间的变化服从方程:λ(t)=λ∞-△λ(0)·e~(-t/r)·用SEM、 SThM、 TEM和 HREM对 AIN陶瓷的显微结构及其对热导率的影响进行了研究,结果表明,晶粒尺寸对AIN陶瓷热导率的影响可以忽略,而分隔在AIN晶粒之间的晶界相会降低热导率。  相似文献   

13.
Abstract

Dense aluminium nitride ceramics were prepared by spark plasma sintering at a lower sintering temperature of 1700°C with Y2O3, Sm2O3 and Dy2O3 as sintering additives respectively. The effects of three kinds of sintering additives on the phase composition, microstructure and thermal conductivity of AlN ceramics were investigated. The results showed that those sintering additives not only facilitated the densification via the liquid phase sintering mechanism, but also improved thermal conductivity by decreasing oxygen impurity. Sm2O3 could effectively improve thermal conductivity of AlN ceramics compared with Y2O3 and Dy2O3. Observation by scanning electron microscopy showed that AlN ceramics prepared by spark plasma sintering method manifested quite homogeneous microstructures, but AlN grain sizes and shapes and location of secondary phases varied with the sintering additives. The thermal conductivity of AlN ceramics was mainly affected by the additives through their effects on the growth of AlN grain and the location of secondary phases.  相似文献   

14.
Spark plasma sintering (SPS) is a newly developed technique that enables poorly sinterable aluminum nitride (AlN) powder to be fully densified. It is addressed that pure AlN sintered by SPS has relatively low thermal conductivity. In this work, SPS of AlN ceramic was carried out with Y2O3, Sm2O3 and Li2O as sintering aids. Effects of additives on AlN densification, microstructure and properties were investigated. Addition of sintering aids accelerated the densification, lowered AlN sintering temperature and was advantageous to improve properties of AlN ceramic. Thermal conductivity and strength were found to be greatly improved with the present of Sm2O3 as sintering additive, with a thermal conductivity value about 131 Wm−1K−1 and bending strength about 330 MPa for the 2 wt% Sm2O3-doped AlN sample SPS at 1,780 °C for 5 min. XRD measurement revealed that additives had no obvious effect on the AlN lattice parameters. Observation by SEM showed that AlN ceramics prepared by SPS method manifested quite homogeneous microstructure. However, AlN grain sizes and shapes, location of secondary phases varied with the additives. The thermal conductivity of AlN ceramics was mainly affected by the additives through their effects on the growth of AlN grain and the location of liquid phases.  相似文献   

15.
以直接氮化法合成的AlN微米粉为原料,添加3%(质量分数)的CaC2为烧结助剂,在5GPa的压力下烧结30min,考察不同烧结温度对AlN陶瓷热导率的影响。用阿基米德排水法、XRD、SEM等技术手段对AlN烧结体进行性能检测。研究表明,在1500~1800℃范围内,温度的升高能促使AlN陶瓷内部晶粒长大,晶型饱满,尺寸均一,晶界相减少,实现烧结致密化,利于热导率的提高。  相似文献   

16.
采用电泳沉积法成功制备相对密度达到61.9%的均匀氮化铝素坯, 经无压烧结后可获得热导率为200W/(m·K)的氮化铝陶瓷. 研究表明, 以无水乙醇为溶剂、加入0.1wt%聚丙烯酸(PAA)做分散剂、pH值控制在9.7左右的悬浮液具有最佳分散性. 电泳沉积(EPD)成型比干压成型制备的预烧体孔容减小, 比湿法成型制得的预烧体大孔显著减少. 用扫描电子显微镜(SEM)对三种不同成型方法制得氮化铝陶瓷的显微结构进行了研究, 结果表明, EPD法所得氮化铝陶瓷的显微结构均匀, 晶粒尺寸5μm左右.  相似文献   

17.
高熵陶瓷是近年来陶瓷材料研究的热点, 制备性能优异的高熵陶瓷是陶瓷材料的发展趋势。本研究采用燃烧法结合真空烧结制备出高熵透明陶瓷。测试结果显示燃烧法制备高熵(La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7粉体的平均晶粒尺寸为8 nm, 高熵粉体为无序的缺陷萤石结构。在真空炉中不同温度烧结的高熵陶瓷具有有序的烧绿石结构。烧结温度对高熵透明陶瓷的在线透过率影响不大, 最大透过率为74%(@1730 nm), 其透过率光谱中出现大量吸收峰。随着烧结温度的升高, 陶瓷的体积密度有所上升, 晶粒尺寸增大, 而维氏硬度逐渐降低。  相似文献   

18.
无压烧结制备高致密度AlN-BN复合陶瓷   总被引:6,自引:0,他引:6  
以低温燃烧合成前驱物制备的比表面积为17.4m2/g的AlN粉末和市售BN粉末为原料, 利用无压烧结工艺制备AlN-15BN复合陶瓷, 研究了复合陶瓷的烧结行为以及制备材料的性能, 结果表明: 由于AlN粉末的烧结活性好, 复合材料的烧结致密化温度主要集中在1500~1650℃之间, 在1650℃烧结后, AlN-15BN复合陶瓷的相对密度可达95.6%. 继续升高烧结温度, 材料的致密度变化不大, 热导率继续增加. 在1850℃烧结3h后, 可以制备出相对密度为96.1%, 热导率为132.6W·m-1·K-1, 硬度为HRA64.2的AlN-15BN复合陶瓷. 提出了高比表面积的AlN粉末促进复合陶瓷烧结的机理, 利用XRD, SEM等手段对烧结体进行了表征.  相似文献   

19.
Effectiveness of microwave sintering process through investigation of microstructural characteristics and electricalrproperties of x(0.94PbZn1/3Nb2/3O3 + 0.06BaTiO3 ) + (1 - x)PbZryTi1-xO3 (PBZNZT) ceramics with x = 0.6 and y = 0.52 was evaluated. The relative density of 95% was achieved with sintering at 800℃for 2 h. The small grain growth exponents indicate how easy the grain growth in these materials sintered using microwave radiation. Grain growth rate increases abruptly and is higher than that of conventional sintering at a temperature higher than 1050℃. This is attributed to the lower activation energy and higher grain boundary mobility. The activation energy required for the grain growth is found to be 132kJ/mol. Higher remanent polarization (Pr = 50. ltLC/cm2) and increase in remanent polarization with sintering temperature are observed in microwave sintering process when compared to that of conventional sintering process, due to fast increase in grain growth rate and homogeneity in the specimen. The results indicate lower sintering energy and reduction of PbO pollution in the working environment by microwave sintering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号