首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic activity is markedly influenced by monovalent cations such as potassium or ammonium, which is due to an increase in catalytic turnover. However, insensitivity to glyphosate appears to be independent from the presence of cations. Therefore, we propose that the Staphylococcus aureus EPSPS should be classified as a class II EPSPS. This research illustrates a critical mechanism of glyphosate resistance naturally occurring in certain pathogenic bacteria.  相似文献   

2.
甘油脱水酶是催化由甘油到1,3-丙二醇过程中的关键酶,它需要在辅酶B_(12)存在的情况下才能有效的进行催化;而在此催化过程中甘油脱水酶会出现失活现象,研究表明辅酶B_(12)可以有效的促使甘油脱水酶复活。因此,辅酶B_(12)在由甘油生物催化生产1,3-丙二醇过程中起到非常重要的作用。本研究利用PCR扩增技术,从Escherichia K-12菌株中扩增出产VB_(12)关键酶—腺苷钴胺素合成酶基因cobs,其序列与NCBI上已经公布的序列比对,同源性为99.6%,将基因cobs与产1,3-丙二醇关键酶基因dhaB、yqhD在Klebsiella pneumoniae中共表达,发酵结果显示重组菌所需额外添加的VB_(12)由原始菌株的0.01 g/L下降到0.004 g/L。  相似文献   

3.
5-Enolpyruvylshikimate 3-phosphate synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19) from shoot tissue of pea seedlings was purified to apparent homogeneity by sequential ammonium-sulphate precipitation, ion-exchange and hydrophobic-interaction chromatography and substrate elution from cellulose phosphate. Gel electrophoresis and gel-permeation chromatography showed that the purified enzyme was monomeric with molecular weight 50,000. The herbicide glyphosate was a potent inhibitor of the forward enzyme-catalyzed reaction.Abbreviations DEAE diethylaminoethyl - EPSP 5-enolpyruvylshikimate 3-phosphate  相似文献   

4.
A procedure for the purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli is described. Homogeneous enzyme of specific activity 17.7 units/mg was obtained in 22% yield. The key purification step involves substrate elution of the enzyme from a cellulose phosphate column. The subunit Mr was estimated to be 49 000 by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The native Mr was estimated to be 55 000 by gel filtration, indicating that the enzyme is monomeric.  相似文献   

5.
Dihydroxyacetone (DHA) kinase of Klebsiella pneumoniae, a gene product of the dha regulon responsible for fermentative dissimilation of glycerol and DHA, was purified 120-fold to a final specific activity of 10 mumol X min-1 X mg of protein-1 at 30 degrees C. The enzyme, a dimer of a 53,000 +/- 5,000-dalton polypeptide, is highly specific for DHA (Km, ca.4 microM). Glycerol is not a substrate at 1 mM and is not an inhibitor even at 100 mM. The enzyme is not inhibited by 5 mM fructose-1,6-diphosphate. Ca2+ gives a higher enzyme activity than Mg2+ as a cationic cofactor. Escherichia coli glycerol kinase acts on both glycerol and DHA and is allosterically inhibited by fructose-1,6-diphosphate. Antibodies raised against E. coli glycerol kinase cross-reacted with K. pneumoniae glycerol kinase but not with K. pneumoniae DHA kinase.  相似文献   

6.
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶的酶学性质   总被引:1,自引:0,他引:1  
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSP合酶)是AROM多功能酶的活性之一.该酶催化莽草酸磷酸(S3P)和磷酸烯醇式丙酮酸(PEP)产生5-烯醇丙酮酰莽草酸-3-磷酸和无机磷酸的可逆反应,受除草剂草甘膦(N-(膦羧甲基)甘氨酸)抑制.纯化了核盘菌AROM蛋白并对EPSP合酶进行了酶学特征研究.结果显示,该酶反应的最适pH值为7.2,最适温度为30℃.热失活反应活化能是69.62 kJ/mol.底物S3P和PEP浓度分别高于1 mmol/L和2 mmol/L时,对EPSP合酶反应产生抑制作用.用双底物反应恒态动力学Dalziel方程求得的Km(PEP)为140.98 μmol/L,K m(S3P)为139.58 μmol/L.酶动力学模型遵循顺序反应机制.草甘膦是该酶反应底物PEP的竞争性抑制剂(Ki为0.32 μmol/L)和S3P的非竞争性抑制剂.正向反应受K+激活.当[K+]增加时,K m(PEP)随之降低,Km(S3P)不规律变化,而K i(PEP)随[K+]增加而提高.  相似文献   

7.
5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.9) from the glyphosate-tolerant cyanobacterium Anabaena variabilis (ATCC 29413) was purified to homogeneity. The enzyme had a similar relative molecular mass to other EPSP synthases and showed similar kinetic properties except for a greatly elevated K i for the herbicide glyphosate (approximately ten times higher than that of enzymes from other sources). With whole cells, the monoisopropylamine salt of glyphosate was more toxic than the free acid but the effects of the free acid and monoisopropylamine salt on purified EPSP synthase were identical.Abbreviations EPSP 5-enolpyruvylshikimate 3-phosphate - Mr relative molecular mass - PEP phosphoenolpyruvate - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - S3P shikimate 3-phosphate The funding of this work by the Agricultural and Food Research Council and the University of Dundee Research Initiatives Programme is gratefully acknowledged.  相似文献   

8.
The aroH gene of Escherichia coli, which encodes the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase isoenzyme of the common aromatic biosynthetic pathway, was cloned behind the tac promoter in expression plasmid pKK223-3. The enzyme was overexpressed, purified to homogeneity, and characterized. The native enzyme was found to be a dimeric metalloprotein containing 0.3 mol of iron per mol of subunit and variable amounts of zinc. The activity of the native enzyme was stimulated two- to threefold when assayed in the presence of Fe2+ ions. Pretreatment of the enzyme with Fe2+ also resulted in activation, accompanied by an equivalent increase in iron content. Treatment of the enzyme with chelating agents led to inactivation, which was fully reversed by the presence of Fe2+ in the assay mixture. The native enzyme exhibited a unique absorption profile, having a shoulder of absorbance on the aromatic band with a maximum around 350 nm and a broad, weak band with a maximum around 500 nm. Treatment of the enzyme with Fe2+ enhanced the absorbance at 350 nm and eliminated the band at 500 nm. Treatment with reducing agents caused the disappearance of both bands and destabilized the enzyme. Feedback regulation of the activity of the enzyme was specific for tryptophan, with maximum inhibition at about 70%.  相似文献   

9.
1. Nitrogenase from the facultative anaerobe Klebsiella pneumoniae was resolved into two protein components resembling those obtained from other nitrogen-fixing bacteria. 2. Both proteins were purified to homogeneity as shown by the criteria of disc electrophoresis and ultracentrifugal analysis. 3. The larger component had a mol.wt. of 218000 and contained one Mo atom, 17Fe atoms and 17 acid-labile sulphide groups/mol; it contained two types of subunit, present in equal amounts, of mol.wts. 50000 and 60000. All the common amino acids were present, with a predominance of acidic residues. The apparent partial specific volume was 0.73; ultracentrifugal analysis gave s020,w=11.0S and D020,w=4.94×10−7cm2/s. The specific activities (nmol of product formed/min per mg of protein) when assayed with the second nitrogenase component were 1500 for H2 evolution, 380 for N2 reduction, 1200 for acetylene reduction and 5400 for ATP hydrolysis. The reduced protein showed electron-paramagnetic-resonance signals at g=4.3, 3.7 and 2.015; the Mössbauer spectrum of the reduced protein consisted of at least three doublets. The u.v. spectra of the oxidized and reduced proteins were identical. On oxidation the absorbance increased generally throughout the visible region and a shoulder at 430nm appeared. The circular-dichroism spectra of both the oxidized and reduced proteins were the same, consisting mainly of a negative trough at 220nm. 4. The smaller component had mol.wt. 66800 and contained four Fe atoms and four acid-labile sulphide groups in a molecule comprising two subunits each of mol.wt. 34600. All common amino acids except tryptophan were present, with a predominance of acidic residues. The apparent partial specific volume calculated from the amino acid analysis was 0.732, which was significantly higher than that obtained from density measurements (0.69); ultracentrifugal analysis gave s020,w=4.8S and D020,w=5.55×10−7cm2/s. The specific activities (nmol of product formed/min per mg of protein) were 1050 for H2 evolution, 275 for N2 reduction, 980 for acetylene reduction and 4350 for ATP hydrolysis. The protein was not cold-labile. The reduced protein showed electron-paramagnetic-resonance signals in the g=1.94 region. The Mössbauer spectrum of the reduced protein consisted of a doublet at 77°K. The u.v. spectra of reduced and O2-inactivated proteins were identical, and inactivation by O2 generally increased the absorbance in the visible region and resulted in a shoulder at 460nm. The circular-dichroism spectra exhibited a negative trough at 220nm and inactivation by O2 decreased the depth of the trough. 5. The reduction of N2 and acetylene, and H2 evolution, were maximal at a 1:1 molar ratio of the Fe-containing protein to the Mo–Fe-containing protein; excess of the Mo–Fe-containing protein was inhibitory. All reductions were accompanied by H2 evolution. The combined proteins had no ATP-independent hydrogenase activity.  相似文献   

10.
The aroA gene (Escherichia coli nomenclature) encoding 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the gram-positive pathogen Streptococcus pneumoniae has been identified, cloned and overexpressed in E. coli, and the enzyme purified to homogeneity. It was shown to catalyze a reversible conversion of shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) to EPSP and inorganic phosphate. Activation by univalent cations was observed in the forward reaction, with NH+4, Rb+ and K+ exerting the greatest effects. Km(PEP) was lowered by increasing [NH+4] and [K+], whereas Km(S3P) rose with increasing [K+], but fell with increasing [NH+4]. Increasing [NH+4] and [K+] resulted in an overall increase in kcat. Glyphosate (GLP) was found to be a competitive inhibitor with PEP, but the potency of inhibition was profoundly affected by [NH+4] and [K+]. For example, increasing [NH+4] and [K+] reduced Ki(GLP versus PEP) up to 600-fold. In the reverse reaction, the enzyme catalysis was less sensitive to univalent cations. Our analysis included univalent cation concentrations comparable with those found in bacterial cells. Therefore, the observed effects of these metal ions are more likely to reflect the physiological behavior of EPSP synthase and also add to our understanding of how to inhibit this enzyme in the host organism. As there is a much evidence to suggest that EPSP synthase is essential for bacterial survival, its discovery in the serious gram-positive pathogen S. pneumoniae and its inhibition by GLP indicate its potential as a broad-spectrum antibacterial target.  相似文献   

11.
EPSP synthase (EPSPS) catalyzes the addition of shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) to form a tetrahedral intermediate (TI) that is converted to 5-enolpyruvylshikimate-3-phosphate (EPSP) and inorganic phosphate. A semiempirical molecular modeling study of the EPSPS active site containing the TI was implemented for the assignment of the protonation states of four basic residues, Lys22, Lys340, His385, and Lys411, based on the evaluation of 16 different protonation states and comparison of the resulting energy minimized heavy atoms coordinates with available X-ray crystallographic data of the D313A mutant of EPSPS. The results, employing both gas phase and continuum solvent models, are indicative that after the TI formation the histidine residue is most probably in neutral form (Nε-protonated) and the lysine residues are in protonated form, which suggests that none of the presently proposed assignments of aminoacid residues involved in the reaction mechanism could be completely correct. The protonated state of Lys22 in the presence of the TI supports the proposal that this residue is a general acid catalyst for TI breakdown. Modeling of the native enzyme active site suggests that Asp313 residue has only minor effects on the definition of the TI position inside the active site. Hydrogen-bonds distances suggest that, in order to act as a base, Asp313 needs the intermediacy of a hydroxyl group of the TI for effecting the attack on the TI methyl group in the elimination step leading to EPSP, as suggested previously in the literature.  相似文献   

12.
Isolation, purification and characterization of 3 new cytotoxins of a K. pneumoniae strain isolated from ready to eat pork sausage are reported. Purification process involved extraction of cytotoxins with polymyxin B sulphate, salt precipitation, gel filtration and anion exchange chromatography. Klebsiella cytotoxin (KCT) I, a glycoprotein of about 65 kDa was verocytotoxic, enterotoxic and dermonerotic. KCT II was erythemogenic, verocytotoxic and enterotoxic protein of co 55 kDa, while KCT III was about double in MW (110 kDa) hadverocytotoxicity but neither enterotoxicity nor dermatotoxicity. KCT I and II caused granulation, conglomeration, shrinkage, detachment and lysis of MDBK and Vero cells, while KCT III induced enlargement, vacuolation, granulation, multinucleolation and syncytia formation in exposed cells. All the three cytotoxins induced specific neutralizing antibodies and cytotoxins were detectable in nanogram quantities with enzyme-linked immunosorbant assay using homologous antibodies. None of the anticytotoxin cross-reacted with either heterologous Klebsiella cytotoxins or with verocytotoxic preparations of Shigella dysenteriae.  相似文献   

13.
Two forms of succinic semialdehyde dehydrogenase have been isolated in Klebsiella pneumoniae M5a1. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 275,000 and 300,000. The large enzyme is specific for NADP. The smaller enzyme, which is induced by growth on 3-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and gamma-aminobutyrate, has been purified to 96% homogeneity by affinity chromatography. The NAD-linked succinic semialdehyde dehydrogenase was able to use NADP as cofactor. Its induction is coordinated with 3- and 4-hydroxylase, the enzymes which initiate degradation of 3- and 4-hydroxyphenylacetic acid. The NAD-linked form is also induced by exogenous succinic semialdehyde. The large enzyme is specific for NADP and has been isolated from a defective mutant which lacked the activity of the NAD-linked succinic semialdehyde dehydrogenase. Activity and stability conditions and true K m values for substrates and cosubstrates of the two enzymes were determined. Some aspects of the induction of the NAD-linked enzyme participating in the metabolism of 4-hydroxyphenylacetic and gamma-aminobutyrate were studied.  相似文献   

14.
In order to identify the essential reactive amino acid residues of 5-enolpyruvylshikimate-3-phosphate synthase, the reaction of the enzyme with its substrate analogue bromopyruvate was investigated. Incubation of the enzyme with bromopyruvate resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact of 28 microM and a maximum rate constant of 0.31 min-1. The inactivation was prevented by preincubation of the enzyme with the substrates shikimate 3-phosphate, 5-enolpyruvylshikimate 3-phosphate or by the combination of shikimate 3-phosphate plus glyphosate (N-phosphonomethylglycine), an inhibitor of the enzyme. Addition of sodium [3H]borohydride to the reaction mixture had no effect on the rate of inactivation but resulted in the incorporation of 3H label to the modified enzyme. Upon 90% inactivation, approximately 1 mol of bromo[14C]pyruvate was incorporated per mole of enzyme modified in the absence or presence of sodium borohydride. When the enzyme was incubated with bromopyruvate in the presence of sodium [3H]borohydride, approximately 1 mol of 3H label was found to be associated per mole of the modified enzyme. Tryptic digestion of these labeled proteins followed by reverse phase chromatographic separation resulted in the isolation of three radioactive peptides. Analyses of these three peptides indicated that bromopyruvate inactivated the enzyme by modifying Cys-408 and Lys-411, which are conserved in all enzyme sequences studied to date.  相似文献   

15.
Abstract Type strains and 62 clinical isolates of Prevotella intermedia and Prevotella nigrescens were typed with the use of genomic DNA fingerprints and rRNA gene probes. The strains were further serotyped with monoclonal antibodies and characterized with SDS-PAGE, enzymatic activities, hemolysis and hemagglutination and coaggregation with Streptococcus and Actinomyces spp. P. intermedia and P. nigrescens were found to have distinct ribotype patterns which correspond to previously defined serotypes I and II/III, respectively. No clear phenotypic difference related to hemolysis, hemagglutination and coaggregation with Streptococcus and Actinomyces species, or expression of aminopeptides and lipase was found between P. intermedia and P. nigrescens .  相似文献   

16.
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase (3-phospho-shikimate 1-carboxyvinyltransferase; EC 2.5.1.19) was purified 1300-fold from etiolated shoots of Sorghum bicolor (L.) Moench. Native polyacrylamide gel electrophoresis revealed three barely separated protein bands staining positive for EPSP synthase activity. The native molecular weight was determined to be 51,000. Enzyme activity was found to be sensitive to metal ions and salts. Apparent Km values of 7 and 8 micromolar were determined for the substrates shikimate-3-phosphate and phosphoenolpyruvate (PEP), respectively. The herbicide glyphosate was found to inhibit the enzyme competitively with respect to PEP (Ki = 0.16 micromolar). Characterization studies support the conclusion of a high degree of similarity between EPSP synthase from S. bicolor, a monocot, and the enzyme from dicots. A similarity to bacterial EPSP synthase is also discussed. Three EPSP synthase isozymes (I, II, III) were elucidated in crude homogenates of S. bicolor shoots by high performance liquid chromatography. The major isozymes, II and III, were separated and partially characterized. No significant differences in pH activity profiles and glyphosate sensitivity were found. This report of isozymes of EPSP synthase from S. bicolor is consistent with other reports for shikimate pathway enzymes, including EPSP synthase.  相似文献   

17.
Isolated hepatocytes from female rats were cultured in HI-WO/BA medium for 6 days. To the medium was added oleate, ethanol, dexamethasone and insulin. With oleate To alone, triacylglycerol accumulated; ethanol augmented the accumulation by 90%. To the best of our knowledge, this is the first demonstration that ethanol in vitro increases the content of triacylglycerol in liver cells. Further addition of dexamethasone or insulin did not alter the accumulation of triacylglycerol, indicating that these hormones did not play permissive roles for the effect of ethanol in the present system. Dexamethasone and insulin, in the absence of ethanol, increased the accumulation of triacylglycerol by 30% and 50% respectively. The concentration of glycerol 3-phosphate was increased in the presence of ethanol; however, with time the concentration of glycerol 3-phosphate declined almost to control values, while the accumulation of triacylglycerol continued linearly; this suggests that the effect of ethanol was not mediated via fluctuations in the concentration of glycerol 3-phosphate. These results are discussed in relation to earlier investigations in vivo and in vitro.  相似文献   

18.
The Streptococcus pneumoniae 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a potential novel antibacterial target. The enzyme catalyzes a reversible transfer of an enolpyruvyl group from phospho(enol)pyruvate (PEP) to shikimate 3-phosphate (S3P) to give EPSP with the release of inorganic phosphate (Pi). Understanding the kinetic mechanism of this enzyme is crucial to the design of novel inhibitors of this enzyme that may have potential as antibacterial agents. Steady-state kinetic studies of product inhibition and inhibition by glyphosate (GLP) have demonstrated diverse inhibition patterns of the enzyme. In the forward reaction, GLP is a competitive inhibitor with respect to PEP, but an uncompetitive inhibitor relative to S3P. Product inhibition shows that EPSP is a competitive inhibitor versus both PEP and S3P, suggesting that the forward reaction follows a random sequential mechanism. In the reverse reaction, GLP is an uncompetitive inhibitor versus EPSP, but a noncompetitive inhibitor versus Pi. This indicates that a non-productive quaternary complex might be formed between the enzyme, EPSP, GLP and Pi. Product inhibition in the reverse reaction has also been investigated. The inhibition patterns of the S. pneumoniae EPSP synthase are not entirely consistent with those of EPSP synthases from other species, indicating that EPSP synthases from different organisms may adopt unique mechanisms to catalyze the same reactions.  相似文献   

19.
The phenylalanine-inhibitable 3-deoxy-D-arabino-heptulosonate-7-phosphate (dHp1P) synthase from Saccharomyces cerevisiae has been purified to apparent homogeneity by a 1250-fold enrichment of the enzyme activity present in wild-type crude extracts, employing an overproducing strain. The estimated molecular mass of 42 kDa corresponds to the calculated molecular mass of 42.13 kDa deduced from the previously determined primary sequence. Gel filtration indicates that the active enzyme is a monomer. The enzyme is an Fe protein and is inactivated by EDTA in a reaction which is reversible by several bivalent metal ions. The Michaelis constant of the enzyme is 18 microM for phosphoenolpyruvate (P-pyruvate) and 130 microM for erythrose 4-phosphate (Ery4P) and the rate constant was calculated as 10 s-1. Inhibition by phenylalanine is competitive with respect to erythrose 4-phosphate and non-competitive to phosphoenolpyruvate, with a Ki of 10 microM.  相似文献   

20.
The tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate-phosphorylating), EC 4.2.1.15) was purified to homogeneity from extracts of Escherichia coli K12. A spectrophotometric assay of the enzyme activity, based on the absorption difference of substrates and products at 232 nm, was developed. The enzyme has a molecular weight of 66,000 as judged by gel filtration on Sephadex G-200, and a subunit molecular weight of 39,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. This suggests either a rapid monomer-dimer equilibrium, or a very asymmetric shape for the native enzyme. The enzyme shows a narrow pH optimum around pH 7.0. The enzyme is stable for several months when stored at -20 degrees in phosphate buffer containing phosphoenol-pyruvate. Intersecting lines in double reciprocal plots of initial velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism with-catalyzed reaction. Product inhibition studies specify an ordered sequential BiBi mechanism with a dead-end E-P complex. The feedback inhibitor tyrosine at concentrations above 10 muM exhibits noncompetitive inhibition with respect to erythrose-4-P, and competitive inhibition with respect to the other substrate, P-enolpyruvate. In addition, tyrosine at concentrations of at least 10 muM causes an alteration of one or more than one kinetic parameter of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号