首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用势场方法和格林函数解构造了三维日冕磁场,相关的边界条件是所观测的光球磁场以及光球上2.6个太阳半径的开放场(源表面),所用的光球数据来自高精度的MDI/SOHO观测(2″/像素,1桢/98min),这种外推方法可以用来分析太阳大事件在大尺度上的可能触发机制,作为一个例子,我们分析了活动区NOAA9077的外推日冕场,发现它们的形态与EIT/SOHO的日冕观测相符很好,结合全日面Ha演化,我们推测来自活动区9082的一次激波扰动应该是导致2000年7月14日大耀斑和日冕物质抛射的触发原因,该扰动沿着外推所得到的一个磁环系统直接传到大耀斑爆发位置。  相似文献   

2.
本文在考虑磁光效应条件下,根据对斯托克斯参数转移方程组求得的数值解,计算了单极太阳黑子的线偏振讯号的单色像,并与美国马歇尔空间飞行中心的观测资料进行了对比,结果表明,径向黑子磁场模型给出与观测相似的单色像,而旋涡形模型导致与观测有显著差异的图像。因此可以认为径向模型更接近于实际情况。  相似文献   

3.
在太阳活动区的物理研究中,特别是在二维动力学光谱分析中,迫切需要相应活动区的磁图资料。本文介绍了在太阳光谱仪的入射狭缝后安装一种新型偏振器进行活动区二维磁场观测的新方法。这种方法不仅能获得日面上任一点的磁场强度,且可快速获得活动区的纵向场磁图。除此之外,还可利用多条谱线的同时观测,获得有关磁力线管结构等方面的资料。  相似文献   

4.
为了解释日冕中高能电子束和太阳耀斑中的快速过程,本文提出在活动区双极黑子上空存在一个准开放磁场线区域的定性模型。如图1所示,准开放磁场线区域被确定在开放磁场线下面和耀斑环顶部之间。 由于那里的快速磁重联或撕裂、爆炸式的能量释放引起了区域性的等离子体加速。那些被加速到10—100keV的高能电子束沿着开放的磁场线从太阳大气等离子体逃逸到行星际等离子体中。在每个连续的高度上将产生朗缪尔波等离子体辐射。朗缪尔波同低  相似文献   

5.
我们利用北京天文台太阳磁场望远镜在1983年投入试观测期间取得的资料,对该年6月份的一群黑子的磁场以及耀斑作了综合分析,得到一些结论。以光球纵场为边界条件,计算了常α无力场。根据挤压无力场耀斑模式,我们认为耀斑爆发的能量,来自异极性黑子的相互靠近。磁中性线的扭曲程度,反映了无力场的状态。  相似文献   

6.
等离子体弧是日冕中的一种基本结构,其高温观测特性意味着它有较高的等离子体压力。本文在二维近似下,讨论了等离子体拱被两个强磁场区域所约束时的平衡。对于较大的等离子体标高,等离子体具有近似圆弧形的结构。通过求出强磁场区域中的磁场位形,可以得到孤立的等离子体拱的平衡状态。由于总压守恒的边界条件是高度非线性的,整个问题是一类非线性的自由边界问题。在近圆弧形近似下,其基态是一维的非线性问题,而相对于基态的偏离是二维的线性问题。这样,整个问题可以给出分析解。  相似文献   

7.
本文在非线性无力磁场的等效边界积分方程的基础上,计算了NOAA8100 活动区在1997 年11 月4 日的磁场结构。发现该磁场由一个浮现磁环、一个具有微分剪切的多磁环系统、和大尺度或开放磁力线等三部分组成。2B/X2 耀斑是由于浮现磁环与具有微分剪切的多磁环系统和大尺度或开放磁力线之间的相互作用而触发的,发生在浮现磁通量区域附近,并位于不同走向的多个磁环的公共足点处。Hβ双带出现在浮现磁通量区域附近,在浮现磁环的足点处。其中位于开放磁力线附近的亮带暗一些。然而在2B/X2 高能耀斑之后,仍然存在着强剪切状态。表明该活动区松弛到了一个低能态但不是最小能量状态。  相似文献   

8.
采用二维三分量磁流体力学模型,对日冕三重无力场电流片的磁场重磁联进行了数值研究,揭示了重联过程的基本物理特征,这类重联过程将加热和加速日冕等离子体,并导致多个高温、高密度、高磁螺度的磁岛的形成和向上喷发,这表明,多重无力场电流片的重联可能在日冕磁能释放、上行等离子体的形成和太阳磁场螺度向行星际空间的逃逸方面起重要的作用。  相似文献   

9.
10.
回顾了日冕磁的研究历史,介绍了我们首镒提出的日冕磁场的微波诊断方法及其应用的带来的启迪,提出进一步开展日冕磁场及其相关研究的建议。  相似文献   

11.
Comparisons of solar magnetic-field measurements made in different spectral lines are very important, especially in those lines in which observations have a long history or (and) specific diagnostic significance. The spectral lines Fe i 523.3 nm and Fe i 525.0 nm belong to this class. Therefore, this study is devoted to a comprehensive analysis using new high-precision Stokes-meter full-disk observations. The disk-averaged magnetic-field strength ratio R=B(523.3)/B(525.0) equals 1.97±0.02. The center-to-limb variation (CLV) is R=1.74−2.43μ+3.43μ 2, where μ is the cosine of the center-to-limb angle. For the disk center, we find R=2.74, and for near-limb areas with μ=0.3, R equals 1.32. There is only a small dependence of R on the spatial resolution. Our results are rather close to those published three decades ago, but differ significantly from recent magnetographic observations. An application of our results to the important SOHO/MDI magnetic data calibration issue is discussed. We conclude that the revision of the SOHO/MDI data, based only on the comparison of magnetic-field measurements in the line pair Fe i 523.3 nm and Fe i 525.0 nm (increasing by a factor of 1.7 or 1.6 on average according to recent publications) is not obvious and new investigations are urgently needed.  相似文献   

12.
In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95?% significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95?% significance level: 3??C?5, 10??C?23, 220??C?240, 340 and 470 minutes, and we also find common oscillation periods (10??C?23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.  相似文献   

13.
Liu  Yang  Xuepu Zhao  Hoeksema  J. Todd 《Solar physics》2004,219(1):39-53
Shutter noise induces a small random shift of the zero point in full-disk magnetograms obtained by the Michelson Doppler Imager (MDI) instrument aboard SOHO. In this paper, we develop a method to remove this offset by fitting the distribution of the magnetic field strength with a Gaussian function (Ulrich et al., 2002). We also discover a systematic error in the five-minute magnetograms that are the sum of five individual magnetograms computed on-board; this error can be removed together with the offset. The mean solar magnetic field and synoptic frames derived from corrected magnetograms show significant improvement. Standard synoptic charts benefit from reduced noise and elimination of systematic errors in the individual magnetograms. This indicates that this correction is effective and necessary.  相似文献   

14.
A type of saturation is sometimes seen in sunspot umbrae in MDI/SOHO magnetograms. In this paper, we present the underlying cause of such saturation. By using a set of MDI circular polarization filtergrams taken during an MDI line profile campaign observation, we derive the MDI magnetograms using two different approaches: the on-board data processing and the ground data processing, respectively. The algorithms for processing the data are the same, but the former is limited by a 15-bit lookup table. Saturation is clearly seen in the magnetogram from the on-board processing simulation, which is comparable to an observed MDI magnetogram taken one and a half hours before the campaign data. We analyze the saturated pixels and examine the on-board numerical calculation method. We conclude that very low intensity in sunspot umbrae leads to a very low depth of the spectral line that becomes problematic when limited to the 15-bit on-board numerical treatment. This 15-bit on-board treatment of the values is the reason for the saturation seen in sunspot umbrae in the MDI magnetogram. Although it is possible for a different type of saturation to occur when the combination of a strong magnetic field and high velocity moves the spectral line out of the effective sampling range, this saturation is not observed.  相似文献   

15.
We present meridional flow measurements of the Sun using a novel helioseismic approach for analyzing SOHO/MDI data in order to push the current limits in radial depth. Analyzing three consecutive months of data during solar minimum, we find that the meridional flow is as expected poleward in the upper convection zone, turns equatorward at a depth of around 40 Mm (∼ 0.95 R), and possibly changes direction again in the lower convection zone. This may indicate two meridional circulation cells in each hemisphere, one beneath the other. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The investigation of the dynamics of magnetic fields from small scales to the large scales is very important for the understanding of the nature of solar activity. It is also the base for producing adequate models of the solar cycle with the purpose to predict the level of solar activity. Since December 1995 the Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO) provides full disk magnetograms and synoptic maps which cover the period of solar cycle 23 and the current minimum. In this paper, I review the following important topics with a focus on the dynamics of the solar magnetic field. The synoptic structure of the solar cycle; the birth of the solar cycle (overlapping cycles 23 and 24); the relationship of the photospheric magnetic activity and the EUV solar corona, polar magnetic fields and dynamo theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We processed magnetograms that were obtained with the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The results confirm the basic properties of long-period oscillations of sunspots that have previously been established and also reveal new properties. We show that the limiting (lowest) eigenmode of low-frequency oscillations of a sunspot as a whole is the mode with a period of 10?–?12 up to 32?–?35 hours (depending on the sunspot’s magnetic-field strength). This mode is observed consistently throughout an observation period of 5?–?7 days, but its amplitude is subject to quasi-cyclic changes, which are separated by about 1.5?–?2 days. As a result, the lower mode with a period of about 35?–?48 hours appears in the power spectrum of sunspot oscillations. But this lowest mode is apparently not an eigenmode of a sunspot because its period does not depend on the magnetic field of the sunspot. Perhaps the mode reflects the quasi-periodic sunspot perturbations caused by supergranulation cells that surround it. We also analyzed SOHO/MDI artifacts, which may affect the low-frequency power spectra of sunspots.  相似文献   

18.
The magnetic field of the umbrae is sometimes found to be saturated in the magnetograms taken by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO).It is suggested that the combination of the low intensity of sunspot umbrae and the limitation of the 15-bit onboard numerical data acquisition leads to this saturation.In this paper,we propose to use the MDI's intensity data to correct this saturation.This method is based on the well-established relationship between the continuum intensity and the magnetic field (the so-called I-B relationship).A comparison between the corrected magnetic field and the data taken by the Stokes-Polarimeter of the Solar Optical Telescope (SOT/SP) onboard Hinode shows a reasonable agreement,suggesting that this correction is effective.  相似文献   

19.
Chae (2001) first proposed a method of self-consistently determining the rate of change of magnetic helicity using a time series of longitudinal magnetograms only, such as taken by SOHO/MDI. Assuming that magnetic fields in the photosphere are predominantly vertical, he determined the horizontal component of velocity by tracking the displacements of magnetic flux fragments using the technique of local correlation tracking (LCT). In the present paper, after briefly reviewing the recent advance in helicity rate measurement, we argue that the LCT method can be more generally applied even to regions of inclined magnetic fields. We also present some results obtained by applying the LCT method to the active region NOAA 10365 under emergence during the observable period, which are summarized as follows. (1) Strong shearing flows were found near the polarity inversion line that were very effective in helicity injection. (2) Both the magnetic flux and helicity of the active region steadily increased during the observing period, and reached 1.2 × 1022 Mx and 8 ×1042 Mx2, respectively, 4.5 days after the birth of the active region. (3) The corresponding ratio of the helicity to the square of the magnetic flux, 0.05, is roughly compatible with the values determined by other studies using linear-force-free modeling. (4) A series of flares took place while the rate of helicity injection was high. (5) The choice of a smaller window size or a shorter time interval in the LCT method resulted in a bigger value of the LCT velocity and a bigger value of the temporal fluctuation of the helicity rate. (6) Nevertheless when averaged over a time period of about one hour or longer, the average rate of helicity became about the same within about 10%, almost irrespective of the chosen window size and time interval, indicating that short-lived, fluctuating flows may be insignificant in transferring magnetic helicity. Our results suggest that the LCT method may be applied to 96-minute cadence full-disk MDI magnetograms or other data of similar kind, to provide a practically useful, if not perfect, way of monitoring the magnetic helicity content of active regions as a function of time.  相似文献   

20.
Chae (2001) first proposed a method of self-consistently determining the rate of change of magnetic helicity using a time series of longitudinal magnetograms only, such as taken by SOHO/MDI. Assuming that magnetic fields in the photosphere are predominantly vertical, he determined the horizontal component of velocity by tracking the displacements of magnetic flux fragments using the technique of local correlation tracking (LCT). In the present paper, after briefly reviewing the recent advance in helicity rate measurement, we argue that the LCT method can be more generally applied even to regions of inclined magnetic fields. We also present some results obtained by applying the LCT method to the active region NOAA 10365 under emergence during the observable period, which are summarized as follows. (1) Strong shearing flows were found near the polarity inversion line that were very effective in helicity injection. (2) Both the magnetic flux and helicity of the active region steadily increased during the observing period, and reached 1.2 × 1022 Mx and 8 ×1042 Mx2, respectively, 4.5 days after the birth of the active region. (3) The corresponding ratio of the helicity to the square of the magnetic flux, 0.05, is roughly compatible with the values determined by other studies using linear-force-free modeling. (4) A series of flares took place while the rate of helicity injection was high. (5) The choice of a smaller window size or a shorter time interval in the LCT method resulted in a bigger value of the LCT velocity and a bigger value of the temporal fluctuation of the helicity rate. (6) Nevertheless when averaged over a time period of about one hour or longer, the average rate of helicity became about the same within about 10%, almost irrespective of the chosen window size and time interval, indicating that short-lived, fluctuating flows may be insignificant in transferring magnetic helicity. Our results suggest that the LCT method may be applied to 96-minute cadence full-disk MDI magnetograms or other data of similar kind, to provide a practically useful, if not perfect, way of monitoring the magnetic helicity content of active regions as a function of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号