首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Research studies have indicated that the comorbidity burden of mood disorders and obesity is reasonably high. Insulin signaling has been shown to modulate multiple physiological functions in the brain, indicating its association with neuropsychiatric diseases, including mood disorders. Leptin is a hormone responsible for regulating body weight and insulin homeostasis. Previous studies on db/db mice (a mouse model that carries a spontaneous genetic mutation in leptin receptor Leprdb) have shown that they exhibit inflammation as well as neurobehavioral traits associated with mood. Therefore, targeting inflammatory pathways such as TNF-α may be an effective strategy in the treatment of obesity-linked mood disorders. The objective of this study was to investigate the effect of long-term administration of etanercept (a TNF-α blocker) on anxiety and depressive-like behaviors in db/db mice. This was performed using light/dark box, forced swim, and open field tests with lean littermate wild type (WT) mice serving as a control group. Using flow cytometry in peripheral blood, we further examined the molecular effects of etanercept on NF-κB p65, TNF-α, IL-17A, and TLR-4 expressing CD4+, CD8+, and CD14+ cells in the peripheral blood. Our data show that peripheral administration of etanercept decreased these cells in db/db mice. Furthermore, our results indicated that peripheral administration of etanercept reduced anxiety and depressive-like behaviors. Therefore, targeting TNF-α signaling might be an effective strategy for modulating obesity-associated depression and anxiety.  相似文献   

3.
4.
Objective: The study aimed to investigate the effects of combination treatment of curcumin and β-interferon (IFN-β)/retinoic acid (RA) on breast cancer cells, including cell viability, apoptosis and migration, and to determine the mechanisms related to GRIM-19 through STAT3-dependent and STAT3-independent pathways.

Methods: The following groups were used for the in vitro experiment: control siRNA, GRIM-19 siRNA, IFN-β/RA and IFN-β/RA?+?curcumin. Cell viability is by the MTT method, cell apoptosis by flow cytometry and cell migration by wound healing experiment; GRIM-19, STAT3, survivin, Bcl-2, GADD153 and COX-2 expression was measured by Western blot. In vivo experiment, MCF-7 cells were subcutaneously injected into nude mice.

Results: GRIM-19 siRNA promoted MCF-7 cell proliferation and migration; inhibited cell apoptosis; and promoted the expression of STAT3, survivin, Bcl-2 and MMP-9. IFN-β/RA inhibited cell proliferation and migration; promoted cell apoptosis; up-regulated GRIM-19; and inhibited the expression of STAT3, survivin, Bcl-2 and MMP-9. Combination treatment of curcumin and IFN-β/RA had a stronger effect than that of the IFN-β/RA group. In addition, curcumin and IFN-β/RA combination inhibited the expression of COX-2 and up-regulated GADD153.

Conclusion: Curcumin synergistically increases the effects of IFN-β/RA on breast cancer cells. The mechanism may be related to the up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways.  相似文献   

5.

Background

The aim of this study was to evaluate the modulatory effect of S-allyl cysteine against cyclophosphamide-induced changes in uroplakin IIIa, CCL11 and TNF-α.

Methods

Mice were treated with cyclophosphamide (200 mg/kg × 7 d, ip). S-allyl cysteine (150 mg/kg × 7d, ip), and comparator compound mesna (40 mg/kg × 7d, ip) were administered 1 h before and 4 h after each cyclophosphamide dose. The urinary bladder was analysed for mRNA and protein changes in uroplakin IIIa (UPIIIa), CCL11 and TNF-α and histopathological findings.

Results

Cyclophosphamide caused hemorrhagic cystitis formation and downregulation of UPIIIa. These changes were accompanied by upregulation of CCL11 and TNF-α. S-allyl cysteine attenuated these changes including protection at histological level. Mesna which was used as a comparator drug also showed protection. However, relatively S-allyl cysteine showed a stronger protective effect than mesna.

Conclusion

These findings highlight a correlation between downregulaion of UPIIIa and enhanced production of inflammatory biomarkers and protective effects of S-allyl cysteine which has been reported to be a potent uroprotective agent. The present study strengthens its role which could be clinically exploited in chemotherapy regimen.  相似文献   

6.
《药学学报(英文版)》2023,13(2):542-558
Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), is a common hepatic manifestation of metabolic syndrome. However, there are no effective therapy to treat this devastating disease. Accumulating evidence suggests that the generation of elastin-derived peptides (EDPs) and the inhibition of adiponectin receptors (AdipoR)1/2 plays essential roles in hepatic lipid metabolism and liver fibrosis. We recently reported that the AdipoR1/2 dual agonist JT003 significantly degraded the extracellular matrix (ECM) and ameliorated liver fibrosis. However, the degradation of the ECM lead to the generation of EDPs, which could further alter liver homeostasis negatively. Thus, in this study, we successfully combined AdipoR1/2 agonist JT003 with V14, which acted as an inhibitor of EDPs–EBP interaction to overcome the defect of ECM degradation. We found that combination of JT003 and V14 possessed excellent synergistic benefits on ameliorating NASH and liver fibrosis than either alone since they compensate the shortage of each other. These effects are induced by the enhancement of the mitochondrial antioxidant capacity, mitophagy, and mitochondrial biogenesis via AMPK pathway. Furthermore, specific suppression of AMPK could block the effects of the combination of JT003 and V14 on reduced oxidative stress, increased mitophagy and mitochondrial biogenesis. These positive results suggested that this administration of combination of AdipoR1/2 dual agonist and inhibitor of EDPs–EBP interaction can be recommended alternatively for an effective and promising therapeutic strategy for the treatment of NAFLD and NASH related fibrosis.  相似文献   

7.
Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, has been shown to modulate numerous molecular targets in the setting of inflammation. This study aimed to determine whether EGCG protects against regional myocardial ischemia/reperfusion (I/R) injuries and its underlying mechanisms involving the role of reperfusion injury salvage kinase (RISK) pathways (PI3K-Akt and ERK 1/2) and GSK-3β or apoptotic kinases (p38 and JNK). The rats were subjected to I/R injuries consisting of 30 min ischemia followed by 2 h reperfusion. EGCG (10 mg/kg, intravenously) was administered alone or along with wortmannin (PI3K inhibitor, 0.6 mg/kg, intravenously) 5 min before the onset of reperfusion. Wortmannin was administered 10 min before the reperfusion. Infarct size was measured at the end of the reperfusion. The phosphorylation of Akt, GSK-3β, and MAPK kinases (ERK1/2, P38 and JNK) was determined by Western blotting after 10 min of reperfusion. EGCG reduced the infarct size compared with the control (25.4 ± 9.2 versus 43.2 ± 8.2 %, p < 0.05). Wortmannin alone did not affect the infarct size, but abolished the EGCG-induced infarct size limiting effect, indicating that EGCG may protect the heart by modulating the PI3K-Akt. EGCG significantly enhanced the phosphorylation of Akt and GSK-3β but not ERK1/2, while it reduced that of p38 and JNK. These results suggest that EGCG has a protective effect against regional myocardial I/R injuries through activation of the RISK pathway and attenuation of p38 and JNK. EGCG may have cardioprotective effects in patients undergoing surgeries prone to myocardial I/R injuries.  相似文献   

8.
9.
Increasing evidence suggests that microglia are a major cellular contributor to neuroinflammation. The present study investigated whether Ampelopsin (Amp), a type of flavanonol derivative from Ampelopsis grossedentata, may exert an anti-inflammatory effect on lipopolysaccharide (LPS)-induced BV2 and primary microglia cells. We found that pre-treatment of microglia cells with Amp before LPS with a non-cytotoxic concentration range decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Amp also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) was obviously reduced by Amp. Our mechanistic study indicated that Amp suppressed LPS-induced activation of the IκB/NF-κB inflammation pathway without affecting changes in the phosphorylation levels of mitogen-activated protein kinases (MAPKs) in BV2 cells. Further studies revealed that Amp markedly reduced the phosphorylation levels of JAK2-STAT3 and STAT3 nuclear translocation. Overall, our data suggest that Amp can suppress the LPS-induced inflammatory response of microglial cells, indicating that Amp has potential for the treatment of inflammation-mediated neurodegenerative diseases.  相似文献   

10.
Chronic cold stress has long-term dramatic effects on the animal immune and neuroendocrine systems. As one of the important regions of the brain, the hippocampus is the main region involved in response to stressors. Nevertheless, the impact to the hippocampus following cold exposure and the underlying mechanism involved are not clear. To evaluate the response of the hippocampus during chronic cold stress, male C57BL/6 mice were exposed to 4 °C, 3 h per day for 1 week, after which neuroinflammation and the molecular and signaling pathways in the hippocampus response to cold stress were investigated. To confirm the potential mechanism, BV2 cells were treated with γ-aminobutyric acid (GABA) and BAY 11-7082 and MCC950, then the activation of microglia and key proteins involved in the regulation of inflammation were measured. We demonstrated that chronic cold stress induced the activation of microglia, the emergence of neuroinflammation, and the impairment of neurons in the hippocampus, which might be the result of GABA-mediated activation of nod-like receptor protein 3 (NLRP3) inflammasome and the nuclear factor kappa B (NF-κB) signaling pathway.  相似文献   

11.
Astilbin is a potential agent for autoimmune and inflammatory diseases and has a protective effect in mice with DSS-induced colitis. NK1.1 CD4+ NKG2D+ T cells are a subpopulation of regulatory T cells that produce TGF-β1 and IL-10. Whether astilbin directly promotes the induction of NK1.1 CD4+ NKG2D+ T cells and whether these astilbin-stimulated T cells exert an immune-regulatory role remain unclear. Here, we show that astilbin efficiently induces the production of NK1.1 CD4+ NKG2D+ T cells with high expressions of TGF-β1, IL-10, CCR6, and CCR9 in a dose-dependent manner ex vivo. These regulatory T cells also substantially inhibit the activities of CD8+ T cells and macrophages. Intraperitoneal injection of astilbin ameliorates the severity of colitis with an increase in the frequency of NK1.1 CD4+ NKG2D+ T cells in the colon tissue of DSS-treated mice. Moreover, adoptive transfer of NK1.1 CD4+ NKG2D+ T cells induced by astilbin remarkably protects against the onset of DSS-induced colitis. Finally, the PI3K, STAT3, and MAPK signaling pathways are involved in the induction of NK1.1 CD4+ NKG2D+ T cells by astilbin. Taken together, our study elucidates a new immune-regulatory mechanism of astilbin by inducing the regulatory NK1.1 CD4+ NKG2D+ T cells and indicates a potential clinical use of astilbin for patients with inflammatory bowel diseases.  相似文献   

12.

Background and purpose:

The uterine pathophysiology underlying inflammatory conditions such as chorioamnionitis remains largely unclear. As we have shown that β3-adrenoceptors act as regulators of myometrial inflammation, we wanted to investigate the potential role of β3-adrenoceptors in preventing uterine remodelling induced by inflammation.

Experimental approach:

The consequences of human chorioamnionitis on myometrial remodelling were characterized by Sirius Red staining and metalloproteinase (MMP) expression, and compared with the effects of incubating human myometrial samples with Escherichia coli lipopolysaccharide (LPS) in vitro. We also assessed the effect of SAR150640, a selective β3-adrenoceptor agonist, on the production and activity of MMPs.

Key results:

Chorioamnionitis was associated with a 46% decrease in total collagen, as well as over-expression of MMP2 (+61%) and MMP9 (+84%); both effects were reproduced by incubation with LPS (10 µg·mL−1, 48 h). LPS-induced over-expression of MMP2 and MMP9 in normal human myometrium was paralleled by an overactivity of the proteins. Both over-expression and overactivity were prevented by the β3-adrenoceptor agonist SAR150640 in a concentration-dependent manner. SAR150640, by itself, did not exhibit any effect on MMP production in control tissues.

Conclusions and implications:

This study shows that inflammation was associated with an intense remodelling of human myometrium, a process likely to be explained by MMP activation. Our study emphasizes the potential therapeutic relevance of β3-adrenoceptor agonists to the treatment of preterm labour and other uterine inflammatory conditions.  相似文献   

13.
Intervertebral disc degeneration (IDD) is the major pathogenesis of lower back pain. Tyrosol is a polyphenolic compound that exhibits anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Herein, we explored the effects and mechanisms of tyrosol on IDD progression in interleukin (IL)-1β-stimulated human nucleus pulposus cells (HNPCs). Cell viability and apoptosis were detected by CCK-8 and flow cytometry analysis, respectively. The production of tumor necrosis factor-α (TNF-α), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was examined to evaluate inflammation. The mRNA expression of matrix metalloproteinases (MMPs) (MMP-3/9/13), collagen type II, SRY-related high mobility group box 9 (SOX-9), and aggrecan was measured by qRT-PCR. Protein levels of silent information regulator 2 homolog 1 (Sirt1), phosphorylated protein kinase B (p-Akt), Akt, collagen type II, SOX-9, and aggrecan were determined by western blot. Results showed that tyrosol attenuated IL-1β-induced viability reduction, apoptosis, and caspase-3/7 activity in HNPCs. The increase in the production of TNF-α, IL-6, NO, and PGE2 in IL-1β-treated HNPCs was abolished by tyrosol treatment. Tyrosol treatment reversed IL-1β-induced upregulation of MMP-3, MMP-9, and MMP-13, and downregulation of collagen II, SOX-9, and aggrecan in HNPCs. Additionally, tyrosol treatment activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in IL-1β-stimulated HNPCs. Sirt1 was upregulated by tyrosol, and Sirt1 silencing inhibited Akt phosphorylation in HNPCs. Sirt1 knockdown attenuated the effects of tyrosol on IL-1β-induced apoptosis, inflammation, and ECM remodeling in HNPCs. In summary, upregulation of Sirt1 by tyrosol suppressed apoptosis and inflammation and regulated ECM remodeling in IL-1β-stimulated HNPCs through activation of PI3K/Akt pathway.  相似文献   

14.
15.

Background and Purpose

FM19G11 up-regulates mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) and PI3K/Akt pathways, which are involved in endothelial function. We evaluated the effects of FM19G11 on defective endothelial vasodilatation in arteries from rats and humans and investigated the mechanisms involved.

Experimental Approach

Effects of chronic in vivo administration of FM19G11 on aortic endothelial vasodilatation were evaluated together with ex vivo treatment in aortic and mesenteric arteries from control and insulin-resistant rats (IRR). Its effects on vasodilator responses of penile arteries (HPRAs) and corpus cavernosum (HCC) from men with vasculogenic erectile dysfunction (ED) (model of human endothelial dysfunction) were also evaluated. Vascular expression of phosphorylated-endothelial NOS (p-eNOS), phosphorylated-Akt (p-Akt) and HIF-1α was determined by immunodetection and cGMP by elisa.

Key Results

Chronic administration of FM19G11 reversed the impaired endothelial vasodilatation in IRR. Ex vivo treatment with FM19G11 also significantly improved endothelium-dependent vasodilatation in aorta and mesenteric arteries from IRR. These effects were accompanied by the restoration of p-eNOS and cGMP levels in IRR aorta and were prevented by either NOS or PI3K inhibition. p-Akt and p-eNOS contents were increased by FM19G11 in aortic endothelium of IRR. FM19G11-induced restoration of endothelial vasodilatation was unaffected by mTOR/HIF-1α inhibitors. FM19G11 also restored endothelial vasodilatation in HPRA and HCC from ED patients.

Conclusions and Implications

Stimulation of the PI3K/Akt/eNOS pathway by FM19G11 alleviates impaired NO-mediated endothelial vasodilatation in rat and human arteries independently of mTOR/HIF-1α activation. This pharmacological strategy could be beneficial for managing pathological conditions associated with endothelial dysfunction, such as ED.  相似文献   

16.
17.
Production of NO by the endothelial nitric oxide synthase (eNOS) has a major role in blood pressure control and suppression of atherosclerosis. In a previous study, we presented evidence implicating the Pin1 prolyl isomerase in negative modulation of eNOS activity in bovine aortic endothelial cells (BAECs). Pin1 recognizes phosphoserine/phosphothreonine–proline motifs in target proteins and catalyzes prolyl isomerization at the peptide bond. In the present study, we show, first, with purified proteins, that Pin1 binds to eNOS directly via the Pin1 WW domain. Binding is enhanced by mimicking phosphorylation of eNOS at S116. Interaction of Pin1 with eNOS markedly reduces eNOS enzymatic activity. Second, in BAECs, we show that TNFα induces ERK 1/2-mediated S116 phosphorylation of eNOS, accompanied by Pin1 binding. TNFα treatment of BAECs results in a reduction in NO release from the cells in a manner that depends on the activities of both Pin1 and ERK 1/2. Evidence is also presented that this mechanism of eNOS regulation cannot occur in rat and mouse cells because there is no proline residue in the mouse and rat amino acid sequences adjacent to the putative phosphorylation site. Moreover, we find that phosphorylation of this site is not detectable in mouse eNOS.  相似文献   

18.
19.
Hepatic cytochrome P450 (P450) gene and protein expression are modulated during inflammation and infection. Oral infection of C57BL/6 mice with Citrobacter rodentium produces mild clinical symptoms while selectively regulating hepatic P450 expression and elevating levels of proinflammatory cytokines. Here, we explored the role of cytokines in the regulation of hepatic P450 expression by orally infecting tumor necrosis factor-α (TNFα) receptor 1 null mice (TNFR1−/−), interleukin-1 (IL1) receptor null mice (IL1R1−/−), and Kupffer cell depleted mice with C. rodentium. CYP4A mRNA and protein levels and flavin monooxygenase (FMO)3 mRNA expression levels were down-regulated, while CYP2D9 and CYP4F18 mRNAs remained elevated during infection in wild-type, receptor knockout, and Kupffer cell depleted mice. CYPs 3A11 and 3A25 mRNA levels were down-regulated during infection in wild-type mice but not in TNFR1−/− mice. Consistent with this observation, CYPs 3A11 and 3A25 were potently down-regulated in mouse hepatocytes treated with TNFα. Oral infection of IL1R1−/− mice and studies with mouse hepatocytes indicated that IL1 does not directly regulate CYP3A11 or CYP3A25 expression. Uninfected mice injected with clodronate liposomes had a significantly reduced number of Kupffer cells in their livers. Infection increased the Kupffer cell count, which was attenuated by clodronate treatment. The P450 mRNA and cytokine levels in infected Kupffer cell depleted mice were comparable to those in infected mice receiving no clodronate. The results indicate that TNFα is involved in the regulation of CYPs 3A11 and 3A25, but IL1β and Kupffer cells may not be relevant to hepatic P450 regulation in oral C. rodentium infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号