首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the concentrations of reduced sulfur compounds in the atmospheric boundary layer over an equatorial African rain forest. Results obtained from a dirigible hot air balloon and a tethered balloon system in the early morning hours reflect a multilayered structure of the atmospheric boundary layer with gradients of COS and CS2 indicating an uptake/production of these trace gases by the soil/vegetation system. In addition, we studied emission and deposition fluxes of volatile reduced sulfur compounds from tropical tree species using cuvettes to directly measure the exchange behavior of tree twigs. These cuvettes were operated at young trees in a forest clearing near ground level as well as at a mature tree species on top of the forest canopy, employing a specially designed tree top jungle raft (Treetop Raft III, Dirigible version) placed on the canopy crown. The results show qualitative and quantitative disparities between different tree species as well as between individuals of the same species near ground level (young) and at the top of the canopy (mature). We found some correlations between photosynthetic CO2 assimilation and emission of sulfur compounds. Comparison between measurements at the ground and at the canopy top show that the studied tree species adapts its photosynthetic CO2 assimilation in response to the climatic conditions at the canopy top. This is accompanied by a quantitative change in trace gas emission. Lower CO2 fixation rates are accompanied by an increase in the emission of reduced sulfur compounds. We propose the increase of DMS emission at the canopy top to be explained by a potential demand of nitrogen in the foliage resulting in an accumulation of sulfur.  相似文献   

2.
Young corn, pea and rapeseed plants were exposed to compressed synthetic air containing varying COS concentrations. The results suggest that COS exchange depends highly on the ambient COS mixing ratios. Ambient COS mixing ratios larger than 150 pptv resulted in a deposition of COS to all plant species studied. Significant (confidence level 95%) COS emission was only detected from rapeseed leaves at COS mixing ratios lower than 90 pptv. We computed COS compensation points around 90 (57–135) pptv and 144 (0–328) pptv COS for rapeseed and corn. For both plant species we found a close correlation between the photosynthetic CO2 assimilation and the COS uptake. In contrast to the gas exchange studies with corn and rapeseed, experiments with pea plants revealed neither a change in response to increased COS concentrations of between 350 and 900 pptv COS nor any correlation with photosynthesis. However, for all three plants studied we found indications that COS is taken up preferentially over CO2 under normal ambient conditions.  相似文献   

3.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO4 2–), elemental sulfur (S0), polysulfide (Sn 2–), hydrogen sulfide (HS: H2S + HS + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S2 2– HS, and FeS, but not between35S labeled SO4 2– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS). The isotope exchange between S0 and Sn 2–) reached 50% of equilibrium within < 2 min while exchange between S2 2– and HS approached equilibrium within 0.5-1 h. In all the experiments HS, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S2 2– and/or HS. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature.  相似文献   

4.
5.
Absorption of hydrogen sulfide in aqueous suspensions of biologically produced sulfur particles was studied in a batch stirred cell reactor, and in a continuous set-up, consisting of a lab-scale gas absorber column and a bioreactor. Presence of biosulfur particles was found to enhance the absorption rate of H(2)S gas in the mildly alkaline liquid. The mechanism for this enhancement was however found to depend on the type of particles used. In the gently stirred cell reactor only small hydrophilic particles were present (d(p) < 3 microm) and the enhancement of the H(2)S absorption rate can be explained from the heterogeneous reaction between dissolved H(2)S and solid elemental sulfur to polysulfide ions, S(x) (2-). Conditions favoring enhanced H(2)S absorption for these hydrophilic particles are: low liquid side mass transfer (k(L)), high sulfur content, and presence of polysulfide ions. In the set-up of gas absorber column and bioreactor, both small hydrophilic particles and larger, more hydrophobic particles were continuously produced (d(p) up to 20 microm). Here, observed enhancement could not be explained by the heterogeneous reaction between sulfide and sulfur, due to the relatively low specific particle surface area, high k(L), and low [S(x) (2-)]. A more likely explanation for enhancement here is the more hydrophobic behavior of the larger particles. A local increase of the hydrophobic sulfur particle concentration near the gas/liquid interface and specific adsorption of H(2)S at the particle surface can result in an increase in the H(2)S absorption rate.  相似文献   

6.
The fluxes of NO and NO2 between wheat canopy monoliths and the atmosphere were investigated with the dynamic chamber technique. For this purpose monoliths were dug out at different plant growth stages from a field site, transported to the institute, and placed in an environmental growth chamber. The wheat canopy monoliths were exposed over a period of four days to the average ratios of atmospheric NO2 and NO measured at the field site, i.e. NO2 concentration of about 18 mL L-1 plus NO concentration lower than 0.5 nL L-1. Under these conditions NO emission into the atmosphere and NO2 deposition into canopy monoliths was observed. Both fluxes showed diurnal variation with maximum rates during the light and minimum rates during darkness. NO2 fluxes correlated with soil temperature as well as with light intensity. NO fluxes correlated with soil temperature but not with light intensity. From the investigation performed the diurnal variation of the NO and NO2 compensation points, the maximum rates of NO and NO2 emission, and the total resistances of NO and NO2 fluxes were calculated. Under the assumption that the measured data are representative for the whole vegetation period, annual fluxes of NO and NO2 were estimated. Annual NO emission into the atmosphere amounted to 87 mg N m-2 y-1 (0.87 kg ha-1 y-1), annual NO2 deposition into canopy monoliths amounted to 1273 mg N m-2 y-1 (12.73 kg ha-1 y-1). Apparently, the uptake of atmospheric nitrogen by the wheat field from NO2 deposition is about 15 times higher than the loss of nitrogen from NO emission. It can therefore be assumed that even in rural areas wheat fields are a considerable sink for atmospheric nitrogen. The annual sink strength estimated in the present study is ca. 12 kg N ha-1 y-1. The possible origin of the NO emitted and the fate of atmospheric NO2 taken up by the wheat canopy monoliths are discussed.Preliminary results of this paper were presented at the Joint Workshop COST 611/Working Party 3 and EUROTRAC in Delft, The Netherlands (Ludwig et al., 1991).  相似文献   

7.
8.
Staphylothermus marinus is an anaerobic hyperthermophilic archaeon that uses peptides as carbon and energy sources. Elemental sulfur (S(o)) is obligately required for its growth and is reduced to H2S. The metabolic functions and mechanisms of S(o) reduction were explored by examining S(o)-dependent growth and activities of key enzymes present in this organism. All three forms of S(o) tested--sublimed S(o), colloidal S(o) and polysulfide--were used by S. marinus, and no other sulfur-containing compounds could replace S(o). Elemental sulfur did not serve as physical support but appeared to function as an electron acceptor. The minimal S(o) concentration required for optimal growth was 0.05% (w/v). At this concentration, there appeared to be a metabolic transition from H2 production to S reduction. Some enzymatic activities related to S(o)-dependent metabolism, including sulfur reductase, hydrogenase, glutamate dehydrogenase and electron transfer activities, were detected in cell-free extracts of S. marinus. These results indicate that S(o) plays an essential role in the heterotrophic metabolism of S. marinus. Reducing equivalents generated by the oxidation of amino acids from peptidolysis may be transferred to sulfur reductase and hydrogenase, which then catalyze the production of H2S and H2, respectively.  相似文献   

9.
Nouchi  Isamu  Hosono  Tatsuo  Sasaki  Kaori 《Plant and Soil》1997,195(2):233-245
Rice paddies emit not only methane but also several volatile sulfur compounds such as dimethyl sulfide (DMS: CH3SCH3). However, little is known about DMS emission from rice paddies. Fluxes of methane and DMS, and the concentrations of methane and several volatile sulfur compounds including hydrogen sulfide (H2S), carbonyl disulfide (CS2), methyl mercaptan (CH3SH) and DMS in soil water and flood water were measured in four lysimeter rice paddies (2.5 × 4 m, depth 2.0 m) once per week throughout the entire cultivation period in 1995 in Tsukuba, Japan. The addition of exogenous organic matter (rice straw) was also examined for its influence on methane or DMS emissions. Methane fluxes greatly differed between treatments in which rice straw had been incorporated into the paddy soil (rice straw plot) and plots without rice straw (mineral fertilizer plot). The annual methane emission from the rice straw plots (37.7 g m-2) was approximately 8 times higher than that from the mineral fertilizer plots (4.8 g m-2). Application of rice straw had little influence on DMS fluxes. Significant diurnal and seasonal changes in DMS fluxes were observed. Peak DMS fluxes were found around noon. DMS was emitted from the flood water in the early growth stage of rice and began to be emitted from rice plants during the middle stage. DMS fluxes increased with the growth of rice plants and the highest flux, 15.1 µg m-2 h-1, was recorded before heading. DMS in the soil water was negligible during the entire cultivation period. These facts indicate that the DMS emitted from rice paddies is produced by metabolic processes in rice plants. The total amount of DMS emitted from rice paddies over the cultivated period was estimated to be approximately 5–6 mg m-2. CH3SH was emitted only from flood water during the first month after flooding.  相似文献   

10.
硫对烟草叶片光合特性和叶绿素荧光参数的影响   总被引:4,自引:0,他引:4  
通过液培试验,测定了不同硫营养水平(0~32 mmol/L)下烟草叶片的叶绿素含量、气体交换参数和叶绿素荧光参数.结果表明,随着硫浓度的升高,烟草叶片的Chl.a、Chl.b、总Chl的含量和Chl.a/b逐渐增加;类胡萝卜素呈先下降后升高的趋势;烟草叶片的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)下降显著,气孔限制值(Ls)明显升高,这表明高硫对烟草叶片的气体交换参数影响较大.随着硫浓度的升高,烟草叶片光合有效量子产量(EQY)、光合电子传递速率(ETR)、光化学淬灭(qP)都表现为先升高后降低,一般是4 mmol/L和8 mmol/L处理相对较高,浓度超过8 mmol/L以后,以上参数显著下降.非光化学淬灭(NPQ) 0,16 mmol/L和32 mmol/L处理表现相对较高,2、4、8 mmol/L处理的相对较低,2~8 mmol/L浓度的处理最适宜烟草的生长,高硫或低硫都会导致烟草EQY、ETR、qP降低和NPQ的升高.  相似文献   

11.
Amide proton exchange of thioredoxin is used to monitor the structural effects of reduction of its single disulfide. An effective 3-5-proton difference between the oxidized and reduced protein form is observed early in proton out-exchange of the whole protein, which is independent of temperature in the range of 5-45 degrees C, indicating that redox-sensitive changes are probably not due to low-energy structural fluctuations. Medium resolution hydrogen exchange experiments have localized the redox-sensitive amide protons to two parts of the sequence that are distant from each other in the three-dimensional structure: the active-site turn and the first beta-strand. The sum of the proton differences observed in the peptides from these regions is equal to that of the whole protein, indicating that all redox-sensitive hydrogen exchange effects are observed in the peptide experiments. A model combining structural changes within the protein matrix with changes in the surface hydration properties is proposed as a mechanism for the communication between distant sites within the protein. Sound velocity and density measurements of reduced and oxidized thioredoxin are presented in the accompanying paper (Kaminsky, S.M. & Richards, F.M., 1992, Protein Sci. 1, 22-30).  相似文献   

12.
Linking measurements of carbonyl sulfide (COS) with those of carbon dioxide (CO2) has a potential in providing a powerful tracer of gross CO2 fluxes between the atmosphere and land plants, a critical element in understanding the response of the land biosphere to global change. A new application of online COS, CO2 and water vapor measurements based on newly designed mid‐infrared (IR) dual quantum cascade laser (QCL) spectrometer measures COS and CO2 (at 2056 cm?1) and water vapor (at 2190 cm?1), with detectors cooled thermoelectrically (at ?43 °C) or with liquid nitrogen (?197 °C) for improved precision. Using the cryogenic detectors with averaging time of 1 s, precision was 50 pmol mol?1, 0.4 μmol mol?1 and 0.01 mmol mol?1 for COS, CO2 and water vapor, respectively (14, 0.2 and 0.003, respectively, for 60 s averaging time). We measured COS concentrations in ambient air, and changes in the rates of COS, CO2 and water vapor exchange of attached leaves in response to changes in light intensity and ambient COS concentrations. The results were consistent with those of nononline gas chromatography–mass spectrometry for COS and IR gas analyzer for CO2 and water vapor, with a high linear correlation for a broad range of concentrations (R2= 0.85 for COS and R2= 1.00 for CO2 and water vapor). The new methodology opens the way for lab and field explorations of COS fluxes as a powerful new tracer for CO2 exchange in the land biosphere.  相似文献   

13.
Total S concentration in the top 35 cm of Big Run Bog peat averaged 9.7 mol·g — wet mass–1 (123 mol·g dry mass–1). Of that total, an average of 80.8% was carbon bonded S, 10.4% was ester sulfate S, 4.5% was FeS2­S, 2.7% was FeS­S, 1.2% was elemental S, and 0.4% was SO4 2–­S. In peat collected in March 1986, injected with35S­SO4 2– and incubated at 4 °C, mean rates of dissimilatory sulfate reduction (formation of H2S + S0 + FeS + FeS2), carbon bonded S formation, and ester sulfate S formation averaged 3.22, 0.53, and 0.36 nmol·g wet mass–1·h–1, respectively. Measured rates of sulfide oxidation were comparable to rates of sulfate reduction. Although dissolved SO4 2– concentrations in Big Run Bog interstitial water (< 200 µM) are low enough to theoretically limit sulfate reducing bacteria, rates of sulfate reduction integrated throughout the top 30–35 cm of peat of 9 and 34 mmol·m–2·d–1 (at 4 °C are greater than or comparable to rates in coastal marine sediments. We suggest that sulfate reduction was supported by a rapid turnover of the dissolved SO4 2– pool (average turnover time of 1.1 days). Although over 90% of the total S in Big Run Bog peat was organic S, cycling of S was dominated by fluxes through the inorganic S pools.  相似文献   

14.
三江平原小叶章湿地生态系统硫的生物地球化学循环   总被引:3,自引:0,他引:3  
以三江平原小叶章湿地生态系统为研究对象,应用分室模型研究了硫在大气-土壤-植物系统各分室中的分布及循环过程。结果表明,在植物-土壤系统内,土壤是主要的贮存库和流通介质,有97.78%的硫贮存在土壤中,且主要以有机硫的形态存在,2.22%的硫贮存在植物中。在植物亚系统中,根是主要的贮库,79.60%的硫贮存在根中。湿地植物地上部分吸收的总S量为0.75gS/m^2;向地下再转移的总S量为0.24gS/m^2,向枯落物S库转移的总S量为0.51gS/m^2;根吸收的总S量为3.76gS/m^2;根向土壤S库转移的总S量为3.07gS/m^2;现存枯落物中的总S量为0.75gS/m^2;枯落物向土壤S库的转移量最低为0.52gS/m^2·a。输入和输出过程的研究表明,小叶章湿地生态系统在生长季(5-9月份)向大气排放H2S的量为1.42mgS/m^2,从大气吸收COS的量为1.83mgS/m^2;通过大气降水输入到生态系统中的硫为4.85mgS/m^2,其差值为5.26mgS/m^2,这表明硫在小叶章湿地生态系统中处于累积状态,湿地存在潜在的酸化趋势。  相似文献   

15.
Michela Monte 《Aerobiologia》1993,9(2-3):169-179
Summary Humidity and solar radiation condition the distribution of lichen communities on the nuraghi of northwestern Sardinia.The growth of lichens withTrentepohlia algae is favored to the north under conditions of low light intensity and high humidity. Lichens with cyanobacteria prevail under dry conditions. Microclimatic conditions also generate selective pressures on the reproductive strategies of the species.Vegetative reproduction through soredia is maximum under extreme conditions: minimum light intensity and maximum humidity on one hand; maximum light intensity and minimum humidity on the other.For vegetative reproduction through isidia, no significant correlation was found with humidity and light: the maximum frequency of isidia was found in situations with a flow of rainwater.Gametic reproduction through spores has a very high frequency (> 80%) in intermediate microclimatic situations.  相似文献   

16.
This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.  相似文献   

17.
Purple sulfur bacteria (PSB) are important photoautotrophs inhabiting chemoclines in euxinic and meromictic lakes. These organisms are the only producers of the carotenoid, okenone, a compound that has been targeted as a biomarker for photic zone euxinia, particularly in ancient sedimentary environments. Although the natural occurrence and geochemistry of this compound has been studied previously, this is the first systematic and comprehensive report on the microbial physiology of okenone production in pure cultures. Four strains/species: Marichromatium purpuratum DSMZ 1591, Marichromatium purpuratum DSMZ 1711, Thiocapsa marina DSMZ 5653, and FGL21 (isolated from Fayetteville Green Lake, New York) were chosen because they produce okenone and Bacteriochlorophyll a (Bchl a). We developed a new, in vivo technique for the quantification of okenone allowing for more rapid and accurate quantification. The ratio of okenone to Bchl a differs among species and strains of PSB, varying from 0.463 ± 0.002 to 0.864 ± 0.002. Photoheterotrophically grown PSB have statistically significant, lowered okenone:Bchl a ratios, decreasing from 0.784 ± 0.009 under autotrophic metabolism to 0.681 ± 0.002, which we interpret to indicate a decreased requirement for okenone when PSB are provided with a complex (> C1) carbon source. The variation in okenone production raises the question on whether okenone expression is constitutive or inducible. The broader implication is that concentrations of okenone in sediments are dependent on metabolism and species composition, and not solely on PSB cell density.  相似文献   

18.
采用抑制剂加入法估算了中肋骨条藻、棕囊藻和东海原甲藻在不同生长期内二甲基硫化物的产生与消耗速率.结果表明:颗粒态二甲基巯基丙酸(DMSPp)和颗粒态二甲亚砜(DMSOp)在3种藻类的不同生长期内均为净消耗,溶解态二甲基巯基丙酸(DMSPd)和溶解态二甲亚砜(DMSOd)的含量受藻类产生与细菌病毒消耗控制,在藻类不同生长期内存在不同的产生与消耗速率,而二甲基硫(DMS)在3种藻不同生长期内均为净产生.同一种藻在不同生长期内以及不同藻在相同生长期内二甲基硫化物的产生与消耗速率均存在较大差异,表明藻类的生理状态和种间差异均对二甲基硫化物的产生与消耗速率产生影响.  相似文献   

19.
20.
Exchange of carbon dioxide between vegetation and the atmosphere   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号