首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
To study the structural conformation of the MM4.17 monoclonal antibody (mAb) epitope, twenty-six mAb MM4.17-specific phage clones were affinity-isolated and their inserts characterized for amino acid composition and homology with MDR1 gene product (MDR1-P-glycoprotein). The resulting sequence alignment shows that a unique consensus sequence, which corresponds to the previously mapped TRIDDPET linear peptide identified through synthetic peptide scanning, could not be identified. However, similarities between the inserts of positive phage clones and P-glycoprotein primary structure, consisting in two or three amino acid-long sequences, were observed. An analysis of the over-represented amino acid residues in the inserts of positive clones, and their comparison with the sequence of the antigen was also performed. The two different procedures led to the identification of four regions in which these similarities are clustered, indicating that four different antigen regions, one of which includes the TRIDDPET linear amino acid sequence, might participate in forming the structure of monoclonal antibody MM4.17 epitope.  相似文献   

2.
3.
4.
A phage-display technology was used to produce a single-chain Fv antibody fragment (scFv) from the 30AA5 hybridoma secreting anti-glycoprotein monoclonal antibody (MAb) that neutralizes rabies virus. ScFv was constructed and then cloned for expression as a protein fusion with the g3p minor coat protein of filamentous phage. The display of antibody fragment on the phage surface allows its selection by affinity using an enzyme-linked immunosorbent assay (ELISA); the selected scFv fragment was produced in a soluble form secreted by E. coli. The DNA fragment was sequenced to define the germline gene family and the amino-acid subgroups of the heavy (VH) and light (VL) chain variable regions. The specificity characteristics and neutralization capacity of phage-displayed and soluble scFv fragments were found to be identical to those of the parental 30AA5 MAb directed against antigenic site II of rabies glycoprotein. Phage-display technology allows the production of new antibody molecule forms able to neutralize the rabies virus specifically. The next step could be to engineer and produce multivalent and multispecific neutralizing antibody fragments. A cocktail of multispecific neutralizing antibodies could contain monovalent, bivalent or tetravalent scFv fragments, for passive immunoglobulin therapy.  相似文献   

5.
Cotransfer of a therapeutic gene together with the human MDR1 gene provides an opportunity to increase the number of transduced marrow cells, expressing the therapeutic gene, by in vivo selection for MDR1. We have used an Lg-MDR1-IRES-neo (LgMIN) retroviral vector, containing MDR1 and neo genes, separated by the EMCV IRES. Human HeLa or canine CTAC cells, transduced with GALV env pseudotyped LgMIN at an MOI of less than 0.01 to ensure 1 proviral copy/genome, were selected with either G418 for neo expression or colchicine for MDR1 expression. The titer determined on HeLa cells with G418 selection was eight-fold higher than that with colchicine selection. In contrast, the same viral supernatant exhibited only a 1.4-fold difference between neo- and MDR1-based viral titer values for CTAC cells. The transduced HeLa cells, with one intact proviral copy per genome, exhibited a 55-fold higher resistance to G418 but only a 4-fold higher resistance to colchicine and a 2-fold higher resistance to Taxol compared with nontransduced cells. About 23% of the transduced cell population did not express vector-derived P-glycoprotein (P-gp) as detected by anti-human P-gp MAb MRK-16. This could explain the difference in viral titers obtained on CTAC cells but not that obtained on HeLa cells. The vector-mediated increase in expression of P-gp was about 20-fold higher in CTAC cells as compared with HeLa cells. These results indicated suppression of expression of vector-derived MDR1 in HeLa cells, in contrast with CTAC cells. To investigate further the possible reasons for this difference, genomic DNA was isolated from the G418-resistant individual colonies of infected cells and analyzed by PCR for full-length proviral MDR1. For transduced CTAC and HeLa cells, selected at a G418 concentration of 1 mg/ml, PCR detected aberrant forms of MDR1 in 17 to 25% of colonies tested. The aberrant forms consisted of MDR1 genes with 2- and 0.7-kb deletions. DNA sequencing across the 2-kb and the 0.7-kb deletion junction suggests cryptic splicing in the producer cell line as the origin of these deletions. The 2-kb deletion corresponds to MDR1 mRNA cryptic splicing via donor (codon 113) and acceptor (codon 773). The 0.7-kb deletion corresponds to splicing via the same donor and a different acceptor (codon 344). When transduced HeLa cells were selected at a higher concentration of G418 (3 mg/ml), the aberrant forms were detected at an increased frequency of about 50% of colonies tested. These results indicate that vector-derived MDR1 is a poor selective marker in HeLa cells but not in CTAC cells and that deletions, which inactivated the MDR1 gene in a bicistronic Mo-MuLV vector, may provide an advantage for expression of the second transgene in HeLa cells.  相似文献   

6.
We reviewed mechanisms of multidrug resistance (MDR) phenotype in tumor cells and evaluated analytical methods for detection of clinical MDR. A well-recognized mechanism of MDR phenotype is the induction and increased expression of P-glycoprotein (P-gp) which is a 170 kDa cellular transmembrane protein encoded by a multidrug-resistance 1 gene (MDR1) and works as a drug efflux pump. Cellular MDR phenotype through P-gp/MDR1 can be detectable at protein level by: (1) using immunohistochemical method, flow cytometric assay and Western blot analysis with monoclonal antibodies against human P-gp, and (2) measuring Rhodamine 123 dye-efflux as a functional assay of P-gp. Molecular knowledge and recent technical progress enable to determine MDR1 gene expression by RT-PCR-based analytical methods as well as conventional quantification methods of gene expression such as Northern blot analysis. In the evaluation of P-gp/MDR1 expression in clinical samples, in which amount of materials was limited, utilization of simple and sensitive methods like competitive RT-PCR assay might be efficacious for its quantitative detection in clinical laboratories. Evidences which showed the positive correlation between the expression of P-gp/MDR1 and clinical resistance or refractoriness of tumor cells to anticancer drugs involved in MDR have been accumulated and support the clinical importance of its detection to circumvent resistance with alternate use of non-MDR drugs.  相似文献   

7.
Affinity purification of a phage-displayed library, expressing random peptide 12-mers at the N terminus of protein III, has identified 10 distinct novel sequences which bind troponin C specifically. The troponin C-selected peptides yield a consensus binding sequence of (V/L)(D/E)XLKXXLXXLA. Sequence comparison revealed as much as a 62.5% similarity between phiT5, the peptide sequence of the phage clone with the highest level of binding to troponin C, and the N-terminal region of troponin I isoforms. Biotinylated peptides corresponding to library-derived sequences and similar sequences from various isoforms of troponin I were synthesized shown to bind troponin C specifically. Alkaline phosphatase fusion proteins of two of the phage clone sequences bound troponin C specifically, and were specifically competed by both library-derived and native troponin I peptides. Measurement of equilibrium dissociation constants of the peptides by surface plasmon resonance yielded dissociation constants for troponin C as low as 0.43 microM for pT5; in contrast, dissociation constants for calmodulin were greater than 6 microM for all peptides studied. Nondenaturing polyacrylamide gel electrophoresis demonstrated that pT5 formed a stable complex with troponin C in the presence of calcium. We also found that the pT5 peptide inhibited the maximal calcium-activated tension of rabbit psoas muscle fibers.  相似文献   

8.
Resistance to chemotherapy in multiple myeloma (MM) and acute myeloid leukemia (AML) is frequently caused by multiple drug resistance (MDR), characterized by a decreased intracellular drug accumulation. MDR is associated with expression of P-glycoprotein (P-gp). GF120918, an acridine derivative, enhances doxorubicin cell kill in resistant cell lines. In this study, the effect of GF120918 on MDR cell lines and fresh human leukemia and myeloma cells was investigated. The reduced net intracellular rhodamine-123 (Rh-123) accumulation in the MDR cell lines RPMI 8226/Dox1, /Dox4, /Dox6 and /Dox40 as compared with wild-type 8226/S was reversed by GF120918 (0.5-1.0 microM), and complete inhibition of rhodamine efflux was achieved at 1-2 microM. This effect could be maintained in drug-free medium for at least 5 h. GF120918 reversal activity was significantly reduced with a maximum of 70% in cells incubated with up to 100% serum. GF120918 significantly augmented Rh-123 accumulation in vitro in CD34-positive acute leukemia (AML) blasts and CD38-positive myeloma (MM) plasma cells obtained from 11/27 de novo AML and 2/12 refractory MM patients. A significant correlation was observed between a high P-gp expression and GF120918 induced Rh-123 reversal (P=0.0001). Using a MRK16/IgG2a ratio > or = 1.1, samples could be identified with a high probability of GF120918 reversal of Rh-123 accumulation. In conclusion, GF120918 is a promising MDR reversal agent which is active at clinically achievable serum concentrations.  相似文献   

9.
Metastatic uveal melanoma is profoundly chemoresistant and has a very poor outcome. We have previously shown that the MDR1 gene and its gene product P-glycoprotein (P-gp), which are known to cause drug resistance in cancer cells, are expressed in ocular melanoma. Overexpression of MDR1 has been associated with a poor survival in some tumor types treated by chemotherapy and in some untreated tumours. To assess whether MDR1 expression is of prognostic value in uveal melanoma, we evaluated the expression of MDR1 by immunohistochemistry in 108 cases. Three semiquantitative grades were used to evaluate positive staining. We detected MDR1 expression in 80% of cases; 28% showed grade I staining; 30%, grade II staining; and 22%, grade III staining. There was a statistically significant association (P=.004) between MDR1 expression by tumor cells and shorter survival times (n=96), which was most striking at grade III levels of expression. Multivariate analysis showed that MDR1 expression is an independent prognostic indicator of poor survival. We conclude that (1) MDR1 may be involved in chemoresistance and tumor propagation in primary uveal melanoma, and (2) increasing levels of expression are prognostically significant and may prove a useful marker of tumor invasiveness, independent of established prognostic factors.  相似文献   

10.
The intracellular location of the MDR1 gene product, known as P-glycoprotein (P-gp), has been detected by flow cytometry in 3 stabilized human melanoma cell lines which had never undergone cytotoxic drug treatment and did not express P-gp on the plasma membrane. In addition, MDR1 mRNA expression was revealed by RT-PCR in the same cell lines. Immunofluorescence microscopy, performed by using the same 2 monoclonal antibodies (MM4.17 and MRK-16) as employed in the flow-cytometric analysis, revealed the presence of P-gp intracytoplasmically, in a well-defined perinuclear region. Double immunofluorescence labelling and immunoelectron microscopy strongly suggested the location of the transporter molecule in the Golgi apparatus. The same observations have been obtained on a primary culture from a metastasis of human melanoma. Analysis of the expression of another membrane transport protein, the multidrug-resistance-related protein (MRP1), showed that it was present in the cytoplasm of all the melanoma cell lines examined. MRP1 also showed Golgi-like localization. The study by laser scanning confocal microscopy on the intracellular localization of the anti-tumoral agent doxorubicin (DOX) during the drug-uptake and -efflux phases, indicated the Golgi apparatus as a preferential accumulation site for the anthracyclinic antibiotic. P-gp function modulators (verapamil and cyclosporin A) were able to modify DOX intracytoplasmic distribution and to increase drug intracellular concentration and cytotoxic effect in melanoma cells. On the contrary, MRP1 modulators (probenecid and genistein) did not significantly influence either DOX efflux and distribution or the sensitivity of melanoma cells to the cytotoxic drug.  相似文献   

11.
The presence of epidermal-growth-factor receptors (EGFR) and of its ligands (TGFalpha and amphiregulin) in breast-cancer tissues suggests that they play a paracrine/autocrine role in tumor growth or progression. This hypothesis was tested on 3 cell lines, S2T2, NS2T2A and NS2T2A1. These epithelial cells are derived from a normal human breast-epithelial-cell culture transformed by SV40-T Ag, are of the same clonal origin, have respectively increasing levels of EGFR, TGFalpha, amphiregulin and of thymidine-kinase activity associated with increasing tumorigenic potential in nude mice (tumor intake and tumor volume). The monoclonal antibody MAb 425, which blocks ligands interaction with EGFR, reduced by more than 90% anchorage-independent growth of the most tumorigenic cells, NS2T2A1. Another anti-EGFR MAb, 528, reduced to 25% of controls the mean tumor mass after NS2T2A1 grafting in mice. Anti-sense RNA expression of EGFR in these cells confirmed the importance of this receptor in tumor progression, since it reduced significantly the tumor volume and tumor weight of NS2T2A1 cells to 16% of those in mock-transfected control cells.  相似文献   

12.
BACKGROUND: The purpose of this study was to investigate micrometastasis (MM) and tumor cell microinvolvement (TCM) in the regional lymph nodes of patients with esophageal squamous cell carcinoma (SCC). METHODS: MM was defined as individual tumor cells or tumor cell clusters <0.5 mm in greatest dimension with a surrounding stromal reaction. TCM was defined as individual tumor cells or tumor cell clusters without a surrounding stromal reaction. One thousand nine hundred and fifty-four lymph nodes were dissected from 69 complete (R0) resection specimens of TNM classified pT1-3, pN0 or pN1, and M0 esophageal SCC. These lymph nodes were examined immunohistochemically using the monoclonal antibody cocktail AE1/AE3 for cytokeratins. The primary tumors were immunostained with an anti-E-cadherin monoclonal antibody. RESULTS: MM +/- TCM was found in 13 cases (31.7%) and TCM alone in 2 cases (4.9%) of the 41 pN0 cases. The pN0 patients with MM (but not TCM) had the same shorter survival as the original pN1 cases (P < 0.05). Of the 69 primary tumors, 49 (71.0%) had reduced or negative E-cadherin expression that showed a correlation with the occurrence of lymph node metastases (original pN1), MM, and TCM, but not prognosis. CONCLUSIONS: The results of the current study show that, in SCC of the esophagus, MM, but not TCM, in the regional lymph nodes is prognostically equivalent to metastasis and should be examined by immunohistochemistry to classify these cases correctly as pN1.  相似文献   

13.
P-glycoprotein (P-gp), responsible for multidrug resistance (MDR) of tumoral cells, is also expressed in apical membranes of normal epithelial cells, among which are proximal tubular cells. Ecto-5'-nucleotidase (5'Nu), co-located with P-gp in renal brush border membranes, could be instrumental in the expression of MDR phenotype. P-gp activity [assessed by rhodamine 123 (R123) and [3H]vinblastine (3H-VBL) accumulation] was evaluated in MDCK cell lines in which human 5'Nu was expressed at different levels after retroviral infection: MDCK-5'NU/- cells with a low 5'Nu activity (Vmax < 2 pmol/mg protein/min) and MDCK-5'NU/+ cells, which expressed a high level of 5'Nu (Vmax 150 +/- 18.5 pmol/mg protein/min). MDCK-5'NU/- cells did not display functional expression of MDR. In MDCK-5'NU/+ cells, R123 and 3H-VBL accumulation was significantly lower than in MDCK-5'NU/- cells and was dramatically enhanced by P-gp inhibitors. This high P-gp activity in MDCK-5'NU/+ cells was confirmed by their resistance to colchicine (measured by LDH release and MTT assay) as compared to MDCK-5'NU/- and was accounted for by increased membrane expression of P-gp assessed by Western blot. Neither AMP nor adenosine, the substrate and the product of 5'Nu, respectively, affected P-gp activity. Inhibition of 5'Nu with alpha beta-methylene-adenosine-diphosphate (alpha beta MADP) or with a blocking anti-5'Nu antibody (1E9) did not blunt MDR expression in MDCK-5'NU/+ cells. Conversely, the anti-5'Nu antibody 5F/F9, which did not block the enzymatic site, induced a decrease of P-gp activity. Further, incubation of MDCK-5'NU/- cells with conditioned medium from MDCK-5'NU/+ cells, which contained significant amounts of released 5'Nu, induced MDR phenotype. In conclusion: (i) expression of ecto-5'Nu promotes multidrug resistance (MDR) activity in renal epithelial cells by enhancement of P-gp expression; (ii) this effect does not involve enzymatic activity of 5'Nu; (iii) supernatants of cells that express 5'Nu conferred P-gp activity to 5'Nu negative cells.  相似文献   

14.
BACKGROUND: Cytokine genes encode proteins that modulate immune system responses. Modification of tumor cells by the introduction of cytokine genes has been used as a strategy to augment host immunity. Interleukin 7 (IL-7) gene transfer enhances the immune response to tumor cells and can result in tumor regression. Transforming growth factor-beta 1 (TGF-beta 1) is a potent immunosuppressive cytokine produced by many tumors. We have previously reported that recombinant IL-7 decreases the expression of TGF-beta 1 by murine macrophages. PURPOSE: This study investigates the inhibition of tumor-derived TGF-beta 1 production as a possible mechanism for the enhanced antitumor immunity that accompanies IL-7 gene transfer. METHODS: A fibrosarcoma cell line (FSA-JmIL-7) genetically modified to produce IL-7 was used to evaluate the effects of IL-7 on tumor production of TGF-beta 1. The control cell line (FSA-Jneo) originated from the same parental fibrosarcoma cell line (FSA) and was produced by transduction with the same retroviral vector without the IL-7 gene. FSA-Jneo and FSA-JmIL-7 tumor cells were evaluated for the expression of TGF-beta 1 messenger RNA (mRNA). To determine if the observed change in TGF-beta 1 mRNA was associated with an alteration in protein secretion, we compared supernatants from tumor cell cultures for TGF-beta 1 production. Specific anti-TGF-beta 1 monoclonal antibody (MAb) was used to confirm the role of TGF-beta 1 in these assays. RESULTS: Compared with FSA parental and FSA-Jneo cells, FSA-JmIL-7 cells expressed TGF-beta 1 mRNA at a lower level. Compared with supernatants from FSA-Jneo cells, FSA-JmIL-7 supernatants contained consistently lower levels of TGF-beta 1 activity (P < .05). In addition, FSA-Jneo supernatants suppressed lymphocyte proliferation to a significantly greater degree than supernatants from FSA-JmIL-7 cells (P < .05). Studies with anti-TGF-beta 1 MAb added to the supernatants confirmed the role of TGF-beta 1 in inhibition of lymphocyte proliferation. CONCLUSION: These findings suggest that IL-7 gene transfer inhibits the production of TGF-beta 1 by tumor cells and thus may enhance the efficacy of the host's antitumor immune response. IMPLICATION: The regulation of endogenous tumor-derived cytokines in response to cytokine gene transfer may contribute to altered immune responses in the tumor microenvironment and thus may be an important additional parameter to assess in gene therapy.  相似文献   

15.
Previous studies have suggested that surface expression of alpha4 integrin by autoreactive T-cell clones is necessary for the clones to induce experimental autoimmune encephalomyelitis (EAE), a mouse model for human multiple sclerosis. To provide direct evidence for this phenomenon, we have transfected alpha4 integrin into C19alpha4-LO, a myelin basic protein-reactive T-cell clone that does not express alpha4 integrin and does not induce EAE when adoptively transferred into a susceptible mouse strain. Transfection of alpha4 integrin converted this clone to an alpha4 integrin-expressing clone that induced EAE. We then examined potential mechanisms by which alpha4 integrin may facilitate the disease process. C19 T-cell clones adhered equally to a monolayer of microvascular endothelial cells, regardless of level of alpha4 integrin expression. However, in contrast to T-cell clones that do not express alpha4 integrin, T-cell clones that express alpha4 integrin (endogenously or by transfection) transmigrated through an endothelial cell layer and subendothelial matrix at an enhanced rate and adhered to recombinant vascular cell adhesion molecule-1 (rVCAM-1) and the CS1 fragment of fibronectin, and after adhesion to these ligands, a matrix-degrading metalloproteinase (MMP-2) was induced and activated. The clones were also shown to constitutively express the membrane-type matrix metalloproteinase (MT1-MMP), an enzyme that activates MMP-2. GM6001 and UK-221,316, inhibitors of metalloproteinases, reduced alpha4 integrin-mediated transmigration and EAE induction by C19 T-cell clones. In addition, we studied a second EAE-inducing T-cell clone, MM4, which constitutively expresses alpha4 integrin and MMP-2. Engagement of alpha4 integrin on the MM4 clone up-regulated the expression and activation of MMP-2, without changing the expression of MT1-MMP. MMP inhibitors also reduced transmigration of and EAE induction by the MM4 T-cell clone. These studies demonstrate directly that expression of alpha4 integrin by autoreactive T-cell clones is required for adoptive transfer of EAE in this model. We also define a role for alpha4 integrin in the disease process in mediating the induction and coordinate activation of a matrix metalloproteinase (MMP-2), which facilitates T-cell transmigration.  相似文献   

16.
Important considerations for T lymphocyte-based gene therapy include efficient gene delivery and expression in primary, human T cells. In this study, retrovirus-mediated gene transfer and the fate of proviral gene expression were evaluated in human T cells activated using (1) immobilized anti-CD3 monoclonal antibody (MAb) plus interleukin 2, or (2) cis costimulation using beads carrying coimmobilized anti-CD3 and anti-CD28 MAbs. By cross-linking the CD3 and CD28 receptors, these MAbs mimic in vivo signaling events, leading to cytokine production and proliferation. A modified human interleukin 1beta (IL-1beta) cDNA inserted into the MFG retroviral vector served as an indicator gene. Retroviral transduction frequencies were similar for T lymphocytes activated by the respective methods. However, early after MAb stimulation and virus exposure, proviral gene expression was greater at the RNA and protein levels in optimized anti-CD3/anti-CD28 bead-activated T cells, corresponding with augmented endogenous cytokine responses and mitogenesis. Proviral gene expression was not regulated by extrinsic cell factors present in activated T cell supernatants. Regardless of the MAb stimulation method, proviral IL-1beta expression declined in later T cell cultures concomitant with a decrease in cellular cytokines. Restimulation by either method reinduced both T cell activity and vector expression. Our finding that proviral gene regulation is downmodulated in the absence of T cell signaling events has implications for clinical strategies using retrovirus-modified T cells.  相似文献   

17.
Throughout the last decades, new developments in cellular and molecular immunology have led to a better insight in the biological nature of MM. Ever since, MM has also been regarded as a tool for studying basic concepts of the terminal B cell differentiation. The first aim of our research work, was to clarify the intraclonal maturation of the tumor clone by examining the existence of myeloma precursor cells at the genetic level. We found that myeloma patients have monoclonal B cells in the peripheral blood and bone marrow which are more immature as the malignant plasma cells and have passed through the stage of antigen selection in the germinal centre. The detection of these myeloma-related cells in the circulation implicates that these cells must be equipped with the appropriate surface receptors that allow transendothelial migration. Once entered in the marrow compartment, the myeloma cells anchor to the stromal environment where they receive the appropriate signals to proliferate and differentiate. We demonstrated that the bone marrow plasma cells express several adhesion molecules that have the potential to interact with stromal elements. We found that myeloma cell lines can bind to fibronectin (FN) and moreover are able to produce FN themselves. Functional assays revealed that FN plays only a minor role in myeloma cell binding to intact stroma, indicating the existence of other and/or multiple adhesive mechanisms. The growth of myeloma cells in the marrow compartment is not only dependent on adhesive interactions but also included the action of locally produced soluble factors. Although IL-6 has been identified as the major growth factor of myeloma cells, maintenance of tumor growth in vivo depends on one or more additional stroma-derived factors. We could establish a unique human myeloma cell line (MM5.1) that grows only in the presence of cultured human bone marrow stroma or stromal conditioned medium and not when cultured with exogeneous IL-6 alone. More recently a stroma-independent variant (MM5.2) of this line was obtained. We found that the growth of MM5.1 cells is mediated by signaling via the gp-130 transducer chain and involves IL-6 acting with a cofactor. The nature of this stromal cofactor is currently under investigation. Both variants of the cell line are also used to study differential expression of genes that are involved in clonal progression towards stroma-independency and extramedullary growth, as can be observed in patients with end stage disease.  相似文献   

18.
We describe a simple antigen capture technique for the selection of a specific human antibody to p185erbB-2, a transmembrane glycoprotein, from a library of human Fab genes expressed on the surface of bacteriophage. Magnetic beads coated with the rat antibody ICR55 have been used to capture erbB-2 antigen from Triton X-100 extracts of SKOV3 cells. The antigen-coated beads have then been used to select bacteriophage displaying human Fab with affinity for p185erbB-2. After 4 rounds of selection, 65 phage clones were isolated which bound specifically to p185erbB-2 in a capture assay. Nine of the clones which gave the strongest reaction in an ELISA were selected for further development and the Fab genes were subcloned into the expression vector pUC119his6mycXba and electroporated into E. coli TG1. Colonies were grown, induced and the supernatants tested for the presence of secreted human Fab. Supernatants from two of the 9 clones contained human Fab and one of these bound specifically to erbB-2 in a capture assay, stained the membranes of the erbB-2 overexpressing cell lines BT474 and SKBR3 and immunoprecipitated a protein of molecular weight 185 000 kDa from SKOV3 cells. We conclude that a membrane antigen captured by specific monoclonal antibody can be used successfully to select phage displaying human antibodies specific for the antigen.  相似文献   

19.
Intratumoral injection of recombinant human tumor necrosis factor (TNF) for inoperable pancreatic cancer has shown some efficacy in suppressing tumor growth or decreasing tumor markers. However, complete regression has not yet been achieved, possibly due to a lack of TNF receptors on tumor cells or an abundance of intracellular resistance factors. Recently, two distinct types of TNF receptors, R55 and R75, were identified, which are responsible for signaling of cytotoxicity and of proinflammation, respectively. In this study, a novel type of suicide gene therapy is proposed that is based on transfection of the R55 gene into human pancreatic cancer cells (AsPC-1 and PANC-1) and subsequent administration of TNF. The transfectants from both cell lines showed higher TNF susceptibility than their parental cells. In vivo tumor formation of an AsPC-1 clone (clone 10) inoculated in nude mice was substantially suppressed by administration of TNF. For practical use of this strategy, however, the adverse effects of TNF may become an obstacle. We previously produced mutein TNF 471, which had a higher affinity for R55, superior antitumor activity, and fewer adverse effects. This mutein TNF 471 manifested greater antitumor activity against clone 10. Because the R55 receptor is known to be involved in augmentation of cellular immunity by TNF, mutein TNF 471 is also expected to be highly potent in this function. In fact, the mutein TNF 471 induced higher splenic natural killer cell activity in nude mice inoculated with clone 10 than did native TNF. This property of augumenting cellular responses may be advantageous in the eradication of viable tumor cells left untransfected in practical gene therapy regimens in which 100% transfection of the R55 gene into tumors is not feasible. Thus, gene therapy combining transfection of the TNF-R55 gene with administration of mutein TNF 471 may provide a new modality for the treatment of pancreatic cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号