首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对头孢类药物中间体生产废水毒性强、污染物浓度大、组分复杂的特点,以某头孢类药物中间体生产公司的废水作为研究对象,采用物化+高级氧化氧化组合工艺进行处理。研究了不同处理方法对废水中SO42-、COD、TN和TP的去除效果,结果表明,在pH=12.5,AlCl3投加量为16 g/L,搅拌速度为300 r/min,反应时间为30 min的反应条件下,钙矾石沉淀法对SO42-去除率可达99.5%以上。同时采用混凝+O3/H2O2催化氧化,在最佳条件下,COD由28 260 mg/L降至515 mg/L、TN浓度由3 437.62 mg/L降至99.64 mg/L、TP浓度由12.93 mg/L降至0.10 mg/L,三者去除率分别高于70%、57%和66%;进一步通过紫外可见光谱和三维荧光光谱分析不同有机污染物的变化,发现废水中主要含共轭双键和芳香族类化合物,处理后有机物转化为简单结构,含量大幅降低,使废水可生化性进一...  相似文献   

2.
涂乐乐 《广东化工》2023,(8):151-153+146
根据广西横州某垃圾填埋场渗滤液COD浓度高、水质成分复杂,且处理难度较大的特点,设计采用新型两级芬顿氧化工艺对其进行处理。研究对比了两级芬顿与絮凝-芬顿联合处理工艺对该渗滤液中COD的去除效果,通过试验研究了pH值、FeSO4用量、H2O2用量三个因素对处理效果的影响,并确定最佳反应条件。结果表明,两级芬顿氧化工艺对垃圾填埋场渗滤液COD的去除效果更好,在反应条件pH为4.5,FeSO4投加量10 g/L、H2O2投加量0.55 g/L时,COD去除率可达到90%以上。  相似文献   

3.
采用Fe/C微电解与Fenton协同氧化-混凝沉淀-A/O组合工艺对蒽醌类染料废水进行处理,研究了各处理单元的优化反应条件。结果表明,在Fe/C微电解与Fenton协同氧化处理单元,当H_2O_2投加量为3 mL/L、HRT为100min、pH为3时,单级COD和色度去除率分别为80.67%和92.73%,BOD5/COD由初始的0.07升高至0.45;在混凝沉淀单元,当pH为8,PAC、PAM的投加量分别为200、2 mg/L,沉淀时间为30 min时,单级COD和色度去除率分别为65.41%和88.33%,BOD5/COD提高至0.57;通过后续生化处理后,最终出水的COD为68 mg/L,色度为30倍,总去除率分别达到99.01%和99.82%,出水NH_4~+-N、TN、TP的质量浓度分别为3.65、19.22、0.38 mg/L,出水水质均达到了GB 4287-2012排放标准。  相似文献   

4.
陈浩  杨斌  乔琪 《净水技术》2023,(S1):194-199
以CODCr、TN为评价指标,探究不同高级氧化工艺预处理乙腈废水的最佳条件,并对比各工艺的处理效果和优缺点,为工程实践提供指导。结果表明,铁碳微电解的最佳条件是pH值为4、铁碳填料投加量为1 500 g/L,2 h内CODCr、TN去除率约为31.87%、38.84%;芬顿氧化的最佳条件是pH值为5、H2O2投加量为20 mL/L、Fe2+/H2O2摩尔比为1:5,2 h内CODCr、TN去除率约为58.97%、62.62%;铁碳微电解-芬顿耦合工艺的CODCr、TN去除率可达60.70%、66.52%;pH值为7条件下,臭氧氧化2 h内CODCr、TN去除率约为63.80%、61.97%,连续反应24 h后可达约96.70%、94.12%。考虑成本和能耗,采用单独芬顿工艺或短时间的臭氧氧化工艺处理乙腈废水的性价比较高。  相似文献   

5.
文中通过水热法成功制备了CoAl-LDH/Bi2MoO6复合光催化剂,并研究了其对工业废水中罗丹明B的去除性能,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶红外显微成像光谱仪(FTIR)、X射线光电子能谱仪(XPS)等对CoAl-LDH/Bi2MoO6催化剂进行一系列表征,考察了不同的pH、掺杂量、H2O2浓度、催化剂投加量对RhB降解效率的影响。试验结果表明,在pH值=6、H2O2物质的量浓度为10 mmol/L、投加量为0.6 g/L的条件下,质量比为1∶5的CoAl-LDH/Bi2MoO6表现出最优异的光催化芬顿活性,在60 min内对质量浓度为10 mg/L的RhB去除率达到97.8%,比单独的光催化体系和非均相芬顿体系的去除率均有提高,且循环后仍能保持较高的催化性能。这说明光催化与芬顿技术之间存在协同效应,CoAl-LDH/Bi2  相似文献   

6.
本研究采用化学混凝-芬顿氧化联合法处理某膏药生产处理废水。混凝试验结果表明:当采用聚合硫酸铁,且投加量为1000 mg/L,混凝时间3 h,pH值8.0时,废水COD去除率为37.0%,水处理处理效果较好。芬顿氧化试验表明:H2O2和Fe2+投加量分别为80mg/L和60 mg/L,反应时间为80min,pH值为3.0时COD去除率达89.1%。化学混凝芬顿氧化联合试验表明:该废水的COD去除率可达90.1%,出水较为清澈。  相似文献   

7.
张磊  范晨  郭波 《现代化工》2022,(2):157-162
以抗生素中常见的磺胺增效剂甲氧苄啶(TMP)为目标污染物、葡萄籽提取液合成纳米铁铈(Fe/Ce-NPs)为催化剂,采用非均相类芬顿体系对甲氧苄啶的降解进行研究。利用SEM、FT-IR、XRD和XPS等对合成的催化剂进行表征。同时考察了反应温度、H2O2浓度、催化剂投加量、TMP初始质量浓度和溶液初始pH对降解甲氧苄啶的影响。结果表明,在TMP初始质量浓度为30 mg/L、Fe/Ce-NPs质量浓度为0.27 g/L、H2O2浓度为0.6 mol/L、35℃和pH 4.0的条件下反应50 min时,TMP的去除率可达100%。伪一级和伪二阶动力学模型均能有效拟合该类芬顿法对TMP的降解过程,但伪二级拟合效果更优,表明该反应过程以化学反应为主,且Ce3+/Ce4+催化还原体系以及CeO2的氧空位作用会促进Fe-NPs/H2O2降解TMP。  相似文献   

8.
开发了一种处理垃圾渗滤液的新型催化剂。将纳米Fe3O4@MOF作为催化剂应用于垃圾渗滤液的电芬顿处理,考察了Fe3O4@MOF投加量、渗滤液初始p H、H2O2投加量等因素对COD去除效果的影响。结果表明,当Fe3O4@MOF投加量为0.75 g/L,反应120 min后,COD的去除率达到70.8%,色度的去除率达到了94.25%。GC-MS和三维荧光结果显示,渗滤液中大分子有机物及富里酸和腐殖酸类物质得到了很好的降解转化,可生化性得到了提升。说明Fe3O4@MOF是一种高效的电芬顿催化剂。  相似文献   

9.
探究了破乳混凝沉淀预处理结合微电解耦合Fenton氧化工艺对煤层气产出水的降解效果。结果表明,微电解耦合Fenton氧化工艺,在微电解pH为3.0,曝气强度为150 L/h,Fenton氧化反应pH为3.5,H2O2投加量为800mg/L的条件下,微电解COD去除率为66.85%,Fenton氧化反应COD去除率为60.30%,综合COD去除率达86.84%,整体工艺最终出水COD为174.21 mg/L,悬浮物质量浓度为2.64 mg/L,石油类质量浓度为1.21 mg/L,整体工艺的悬浮物去除率为99.01%,石油类去除率为97.40%,COD去除率为93.14%,实现了煤层气产出废水的高效处理。  相似文献   

10.
采用活性炭吸附法去除反渗透浓水中的有机物,减轻后续处理的负荷,考察了活性炭的种类、停留时间、活性炭投加量以及pH对COD去除率的影响。结果表明,采用2#活性炭为吸附剂,进水pH=6,400 mL水,停留时间30 min,活性炭投加量1.5 g时,COD去除率达61.8%,采用动态吸附并应用到现场试验中,吸附塔装填2#活性炭40 t,进水量100 m3/h,平均COD 142 mg/L,pH=8.04,停留时间36 min,当出水COD<60 mg/L,活性炭的处理量可达1 330 m3/h,平均COD 142 mg/L,pH=8.04,停留时间36 min,当出水COD<60 mg/L,活性炭的处理量可达1 330 m3/t。  相似文献   

11.
抗生素的滥用和生产废水的无序排放造成了水体中抗生素污染问题日益严重。通过溶剂热法合成了立方体形貌的α-Fe2O3光芬顿催化剂,采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)等方法对其微观结构、物相等进行了表征。以盐酸四环素(TC)为模型抗生素污染物,研究了新型催化剂对TC的吸附和光芬顿降解性能,并探究了催化剂浓度、H2O2加入量、LED光源波长和p H等因素对TC降解效果的影响规律。结果表明,该工作成功合成出了粒径分布均一且具有立方体形貌的α-Fe2O3,其对TC的吸附在30 min内即可达到平衡,吸附量可达7.06 mg/g。当TC的初始质量浓度为20 mg/L、α-Fe2O3催化剂的质量浓度为0.5 g/L时,采用可见光LED光源光芬顿降解30 min,TC的去除率可达80%以上。  相似文献   

12.
通过向传统 SBR反应器中投加适当的强磁性粉末(Fe3O4)以强化活性污泥沉淀性能、降低污泥负荷,实现了反应器内污水处理效果的增强。实验结果表明:投加的磁粉粒度为 30 nm,磁粉浓度为 2 000 mg/L时,整体优于传统SBR 法,期间 COD、NH4+-N、TP 的平均去除率分别为 98.51%、95.27%、83.90%;磁粉加入后,提高了污泥浓度,即使SV30达到 70% 以上,MLSS 达到 9 500 mg/L 左右时,在处理高浓度的食堂淘米污水条件下,反应器也可以正常运行;实验期间3种工况均对COD、NH4+-N 去除效果较好,对 TP、TN 去除率也能达到 70% 左右。  相似文献   

13.
以活性炭吸附和Fenton氧化技术处理含盐有机废水。结果表明,活性炭预处理过程中,当废水pH为6时,投加8 g/L的活性炭,30 min后COD去除率达到66.8%,活性炭预处理后,投加12 mmol/L FeSO_4·7H_2O、240 mmol/L30%H_2O_2,30 min后COD去除率达到82.4%;Fenton氧化技术直接处理废水时,调节废水pH为6,FeSO_4·7H_2O和30%H_2O_2分别为15 mmol/L和300 mmol/L时,COD去除率为41.3%,继续投加8 g/L活性炭,30 min后COD去除率达到78.8%。  相似文献   

14.
采用Fe(Ⅱ)(EDTA)/O3工艺处理含聚废水,研究EDTA浓度、Fe2+浓度、水力停留时间(HTR)、初始pH对聚丙烯酰胺(PAM)去除率和COD降解效能的影响,探讨了Fe(Ⅱ)络合催化臭氧反应动力学特征及其机理。结果表明:当EDTA浓度为0.050mmol/L、Fe2+浓度为0.050mmol/L和HRT为120min时,PAM去除率为75%;增加水样初始pH有利于提高PAM去除率,同时水样pH随HRT增加缓慢下降;废水COD值在HRT为30min内逐渐增至最大,随后逐渐减小并达到稳定。Fe(II)(EDTA)/O3工艺处理含聚废水的反应符合二级动力学反应,初始PAM质量浓度在50~100mg/L范围内,二级反应速率常数为2.35×10-4~3.35×10-4L/(mg·min)。  相似文献   

15.
采用微波辅助快速芬顿组合工艺,对深圳某废水处理厂复杂有机废水进行芬顿氧化预处理,以达到该厂生化进水指标。实验结果表明,在Fe~(2+)投加量为54 mmol/L,H_2O_2投加量为222 mmol/L,微波功率为6 kW,水力停留时间为10 min的条件下,可使废水COD从7000 mg/L左右处理到2500 mg/L以下,COD去除率可达65%以上,同时废水的可生化性也得到提高。  相似文献   

16.
本文研究了投加不同浓度粉末活性炭对高密度沉淀工艺和臭氧催化氧工艺处理某化工园区污水处理厂二级出水的影响。结果表明:投加粉末活性炭不影响高密度沉淀池对SS和TP的处理效果,但可以提高对COD的去除率,投加20、40、60、80mg/L时,COD去除率分别增加了9%、18%、20%和21%;当通入臭氧反应后,粉末活性炭投加量为20 mg/L时,臭氧催化氧化工艺的COD去除率增加了7%,而投加量大于20 mg/L,会降低臭氧催化氧化工艺的COD去除率。  相似文献   

17.
研究了超声波/紫外光(US/UV)-纳米Fe0类芬顿法处理高浓度络合态重金属废水的适宜条件,探究该方法对化学需氧量(COD)和络合态重金属的去除机理。实验结果表明:在US/UV作用下,纳米Fe0类芬顿法处理COD浓度1738.86 mg/L、总铬473.14 mg/L、总镍43.35 mg/L、总铜8.53 mg/L的络合态重金属废水,在pH值为3、温度为65℃、振荡速度150 r/min时,纳米Fe0最佳用量为9.6 g/L、H2O2投加量为1 mL/L,反应20 min后,COD、总铬、总镍和总铜的去除率分别为96.75%、99.99%、99.94%和99.57%。相较于传统芬顿法,该方法加快反应速率,反应时间缩短了66.6%,去除效果提高10%,且污泥量减少13%。纳米Fe0重复利用3次后,对络合态重金属的去除率仍在50%以上,可见纳米Fe0重复利用性好。因此,纳米Fe0在处理高浓度络合态重金属废水方面具有...  相似文献   

18.
陈用 《广州化工》2023,(7):145-148
由于南宁市某产业园生活垃圾填埋场的膜滤浓缩液停止回灌,南宁市城南生活垃圾卫生填埋场渗滤液处理站需承担部分膜滤浓缩液的处理任务。本研究将膜滤浓缩液与垃圾渗滤进行混合,使用两级芬顿和絮凝芬顿联合法对膜滤浓缩液与垃圾渗滤液进行协同处理,对比这两种工艺对混合液中的COD去除效果。结果表明,两级芬顿氧化法对混合液中的COD的去除效率更高,最佳反应条件为pH值为4.0,FeSO4投加量为12 g/L、H2O2投加量为25 mL/L时,COD去除率为92.24%以上。  相似文献   

19.
高级氧化技术是一种新型、绿色的水处理工艺,通过各种强化技术更快、更多地产生具有强氧化性的羟基自由基,使其与废水中的有机物发生链式反应,从而将废水中的有机物快速高效降解为无害的无机盐。采用两种典型的高级氧化技术:电芬顿和臭氧,一体化处理船舶生活污水,研究结果表明:在电流密度20 mA/cm2,芬顿试剂n(H2O2):n(Fe2+)=3:1,C(Fe2+)为0.01 mol/L,氧气速率2 L/min,臭氧投加量6 g/L时,电芬顿-臭氧一体化装置能有效降解船舶生活污水中的污染物,当处理时间为120 min时,对COD去除率可达86.4%。  相似文献   

20.
以 COD 为评价指标,考察了 Fenton氧化法对水中磺胺甲噁唑(SMX)去除效果。通过探讨 H2O2投加量、Fe2+投加量以及溶液初始 pH 对 COD 去除的影响,确定了 Fenton 去除 SMX 的优化工艺条件为:pH=3,H2O2投加量为 10mmol/L,Fe2+投加量为 1.0 mmol/L,在该条件下,COD 去除率可达 71.8%。与经典动力学相比,伪动力学模型能很好拟合 SMX 的去除过程,其中伪二级动力学模型的相关系数为 0.999 9。此外,根据 GC/MS 分析结果,推测了 SMX 可能的降解途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号