首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
在役装配式空心板桥横向联系受设计、施工及运营各因素的影响,易出现铰缝损伤病害。为研究铰缝损伤对空心板桥结构性能的影响,论文根据现场空心板桥铰缝病害调研结果对铰缝损伤位置、损伤长度和损伤程度3种损伤类型分布特点进行统计分析;采用梁格法建立空心板桥有限元模型,对比分析了铰缝在不同损伤工况及类型下(长度、深度和位置)对结构受力性能影响。研究结果表明:(1)铰缝损伤位置越靠近跨中对于梁板受力的影响越大。(2)随着铰缝损伤长度增加,中板单侧损伤下活载弯矩增幅呈线性递增,而边板单侧损伤和中板双侧损伤均会导致梁板产生"单板受力"效应,其"单板受力"临界长度分别为0.6L和0.7L。(3)损伤长度或损伤深度二者之一较小时,活载作用下梁板弯矩和挠度变化很小;当损伤长度和损伤深度均较大时,活载作用下的梁板弯矩和挠度增幅明显。(4) 20 m标准空心板的中板单板受力时抗弯承载能力不满足规范要求,边板单板受力时抗弯承载能力和抗裂验算不满足规范要求。研究结果为空心板铰缝损伤下的结构安全评估及管养提供有益参考。  相似文献   

2.
当前的公路桥梁建设工程大量兴起,相应的建设施工技术也得到了进一步的发展与成熟,为公路桥梁工程的建设质量,提供了重要的技术保障。结合工程实例,探讨了装配式预应力空心板桥的施工技术,以供相关工程借鉴与参考。  相似文献   

3.
装配式斜交空心板桥受力性能较复杂,与正交桥有很大差别。以某高速公路斜交空心板桥计算为背景,对同情况不同斜交角度的空心板桥进行模型计算分析,并与空心板直桥计算结果对比,得出斜交空心板桥存在有效计算跨径的概念,其基频、横向分布系数、弯矩、最大位移均是受到有效计算跨径的影响,表现出斜交空心板桥不同于同跨径直桥的一些主要特性,进而可以参考并推广到其他类型斜桥的受力性能分析。  相似文献   

4.
空心板铰缝病害是高速公路运营中的常见问题.设计了一种对空心板加载体外横向预应力的方法,较常规方法能延长养护周期,从根本上改善预制拼装梁的桥横向联系状况,通过计算,得出了各跨径空心板的预应力加载值;通过试验验证,本方法对改善单板受力状 况具有明显的效果.  相似文献   

5.
为了改进装配式空心板桥横向受力性能,设计了在铰缝结合面上利用连续钢板代替间断钢筋和改进铰缝结构与填充材料的2种铰缝改进措施,采用局部模型试验计算了铰缝结合面的法向和切向强度,提出了采用间断钢筋和连续钢板的铰缝结合面抗弯、抗剪承载能力计算公式。研究结果表明:局部模型试验值与公式计算值的误差不超过10%,表明所提出的抗弯、抗剪承载能力计算公式可以准确地计算采用连续钢板的铰缝结合面承载能力;未采用结合面钢筋的深铰缝,结合面法向强度为1.29 MPa,为弱侧混凝土轴心抗拉强度的39%,结合面切向强度为0.45 MPa,为弱侧混凝土轴心抗压强度的1.5%;采用间断钢筋和连续钢板的铰缝结合面法向强度较未采用结合面钢筋的铰缝分别提高了98%和73%,结合面切向强度分别提高了71%和78%;普通混凝土浅铰缝结合面法向强度为1.30 MPa,为弱侧混凝土轴心抗拉强度的40%,结合面切向强度为0.33 MPa,为弱侧混凝土轴心抗压强度的1.1%;采用UHPC填充深、浅铰缝的结合面法向强度较普通混凝土填充深、浅铰缝分别提高了13%和21%,结合面切向强度分别提高了64%和94%。  相似文献   

6.
为解决现有装配式空心板桥的铰缝病害, 提出了一种新型装配式倒T形空心板桥; 进行了跨径8 m的倒T形空心板桥足尺模型试验和非线性有限元分析, 研究了车辆荷载作用下倒T形空心板桥各组成构件的应力、挠度和裂缝分布等, 得到了倒T形空心板桥的受力机理与破坏模式; 对比了倒T形空心板桥与带门式钢筋空心板桥的受力性能, 验证了倒T形空心板解决铰缝开裂问题的有效性。研究结果表明: 倒T形空心板桥的破坏过程分为弹性阶段、空心板开裂阶段、现浇结构层混凝土开裂阶段和受拉钢筋与钢板屈服阶段, 其整体受力性能良好, 极限荷载是带门式钢筋空心板桥的1.4倍; Ω形钢板上方受拉区混凝土首先达到拉应力限值3.17 MPa, 是受力薄弱部位; 由于Ω形和L形钢板的设置, 现浇结构层混凝土开裂时, 与结构层等高度的各结合面处的法向和切向黏结应力均不会超过限值2.30和0.29 MPa, 避免了结合面的黏结失效; 与带门式钢筋的空心板桥相比, 倒T形空心板构造不会减小空心板的开裂荷载, 且新旧混凝土结合面开裂在空心板开裂之后, 可从根本上解决传统空心板桥在车辆荷载作用下铰缝先于空心板开裂的问题。  相似文献   

7.
针对空心板桥的横向连接失效对空心板桥受力性能的影响进行深入的分析。利用动载试验针对桥梁横向联系加固后、横向连接钢板失效、铰缝混凝土与横向连接钢板失效三个工况进行有限元计算与现场数据实测,对比分析竖向挠度曲线。结论是空心板横向连接处板间受力复杂,传统的横向铰接板(梁)理论不能很好的模拟现场空心板横向连接间受力情况,未能突出模拟空心板的"单板受力"情况;空心板加固后,横向钢板失效与压力注胶失效对桥梁的承载力有一定幅度的降低,同时使桥梁的整体受力性能得到大幅度降低。  相似文献   

8.
为了研究空心板桥铰缝失效对荷载横向分布的影响,推导了空心板桥整体受力及铰缝失效的典型力学模型,阐明了铰缝失效时荷载横向重分布的一般规律,并采用ANSYS有限元分析了不同损伤位置和损伤程度铰缝对上部结构荷载横向分布及其效应的影响。结果表明,铰缝失效改变了空心板桥上部结构的整体受力性能,损伤程度越大,上部结构组合板或单板效应越明显;失效铰缝相邻空心板荷载横向分布系数相对变化较大,最大为1.44和0.6倍;由于失效铰缝一侧空心板承担荷载比例增大,另一侧减小,导致相邻空心板挠度差异较大而产生错位、内力状态差别明显,建议加强偏载侧空心板应力监测。  相似文献   

9.
目前在中小跨径空心板桥中普遍出现了"单板受力"问题",单板受力"状态对桥梁危害性特别大,除引起空心板自身破坏外,还可引起桥面铺装、桥面伸缩装置、桥梁支座等的破坏,给行车安全带来了隐患。针对空心板桥的这一病害形式,借助有限元软件ANSYS对体外横向预应力筋加固前、后的空心板桥建立了有限元模型。分析了其荷载横向分布规律及预应力作用的加固效果。  相似文献   

10.
受各种主客观因素的影响,新建桥梁正受到不同程度破坏的威胁,使来往行车的安全无法得到有效的保证。当前高速公路中的桥梁大多为混凝土空心板桥,该桥梁的结构非常简单,施工也相对较为简便,但同时也存在着许多问题,亟需进行加固改造,从而延长混凝土空心板桥整体的使用寿命。  相似文献   

11.
针对现有铰接空心板桥的薄弱部位——铰缝, 提出一种在空心板与铰缝结合面底部设开孔钢板的空心板构造, 通过开孔钢板改变结合面裂缝开展的路径, 达到延缓空心板与铰缝结合面通缝形成的目的, 并进行了8m跨径的铰接空心板足尺模型试验。在试验和非线性有限元分析的基础上, 与结合面底部带钢筋的铰接空心板试验进行了对比。分析结果表明: 当试验荷载为100kN (1.43倍车辆荷载) 时, 空心板跨中出现横向裂缝, 空心板梁整体刚度降低, 空心板受力状态由弹性阶段进入弹塑性阶段; 在试验荷载加至300kN (4.29倍车辆荷载) 为止的整个加载过程, 未观察到空心板与铰缝结合面底部出现裂缝; 当结合面底部设门式钢筋时, 裂缝沿结合面从下向上扩展, 最终形成通缝, 然而, 当结合面底部设开孔钢板后, 铰缝沿结合面开裂至开孔钢板下方后, 裂缝的扩展需要绕过开孔钢板, 使得开孔钢板下方铰缝混凝土开裂后, 再沿开孔钢板上方结合面向上扩展, 形成通缝; 铰缝开裂荷载由结合面设置钢筋的69kN (0.99倍车辆荷载) 提高到314kN (4.49倍车辆荷载), 提高了3.50倍; 铰缝形成通缝时的荷载由结合面设置钢筋的199kN (2.84倍车辆荷载) 提高到489kN (6.99倍车辆荷载), 提高了4.51倍。可见, 在结合面底部设开孔钢板后, 铰缝裂缝开展路径发生变化, 延缓了空心板与铰缝结合面的开裂。  相似文献   

12.
以在空心板与铰缝构造结合面底部布设门式钢筋的深铰缝构造为研究对象, 参照2007年交通运输部颁布的装配式空心板桥标准图, 设计了一跨8 m足尺模型, 通过试验和非线性有限元法分析了车辆荷载作用下铰接空心板破坏类型、破坏位置与开裂荷载等破坏模式。分析结果表明: 试验验证了铰接空心板非线性有限元模型能较好地模拟铰接空心板在车辆荷载作用下的受力性能; 在空心板与铰缝结合面的三个方向的黏结滑移关系中, 应以竖向相对滑移量作为结合面黏结破坏失效的指标; 在车辆荷载作用下, 空心板与铰缝结合面是最薄弱的受力部位, 当荷载达到69 kN(0.99倍车辆荷载)时, 空心板与铰缝结合面底部开裂, 但当荷载达到85 kN(1.21倍车辆荷载)时, 空心板跨中截面底部才出现横向裂缝; 与在结合面底部不设门式钢筋的空心板相比, 在结合面底部设置门式钢筋后虽不能明显提高铰缝构造的开裂荷载, 但可以将铰缝通缝荷载从140 kN(2.00倍车辆荷载)提高至199 kN(2.84倍车辆荷载), 且不出现贯通的纵桥向裂缝。  相似文献   

13.
对某多跨空心板桥进行了无缝化改造, 简支板改为双排支座连续板, 桥台改为延伸桥面板桥台, 取消了全桥的伸缩装置; 测试了实桥静动载, 研究了无缝化改造后的多跨空心板桥受力性能; 应用有限元模型, 计算了结构受力、承载力、引板受力及单、双排支座对结构力学性能的影响。测试结果表明: 无缝化改造后的桥梁实测基频为8.60Hz, 高于改造前的5.37Hz, 4种车速下实测冲击系数最大值为1.11, 小于《公路桥涵设计通用规范》 (JTG D60—2004) 的计算值1.36, 应变与挠度校验系数均小于0.95, 因此, 无缝化改造提高了全桥整体性能, 改善了行车条件。有限元分析结果表明: 无缝化改造后桥梁基频的计算值为8.48Hz, 实测基频与计算基频比值为1.01, 因此, 改造后桥梁功能状况良好; 跨中截面的正弯矩明显降低, 第2跨跨中降幅最大, 达15.6%, 但内支座处出现了负弯矩, 同时剪力增大, 最大增幅为18.2%;跨中挠度明显降低, 以第2、3跨降幅最大, 达35.5%, 桥梁整体刚度明显提高; 最大裂缝宽度计算值为0.15mm, 小于《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) (简称《桥规》) 规定的0.20mm, 承载力、挠度和裂缝宽度验算均满足《桥规》要求; 支座排数对上部结构的受力影响较小, 采用双排支座是可行的; 引板与地基的摩擦因数对引板和铺装层轴向力影响较大, 对弯矩影响较小; 引板和铺装层最大拉应力分别为0.87、1.25MPa, 满足设计强度要求。  相似文献   

14.
某病害桥横向体外预应力加固实践   总被引:2,自引:0,他引:2  
通过对某砼空心板简支梁桥病害的调查,分析了该类桥梁病害的产生机理,提出了一种新的加固方法———体外横向预应力加固技术.通过该桥加固前、后的动静载试验,评析了该桥的加固效果.证明采用体外横向预应力技术加固空心板简支梁桥效果明显.  相似文献   

15.
建立了单梁式斜交桥挠度和扭转角的计算公式,并以此公式为基础,给出了铰接斜交板桥荷载横向分布系数的计算方法,编制了计算程序。为解决斜交板桥纵向加载计算,给出了截面弯矩和扭矩影响线计算公式,分析了斜交板桥截面弯矩影响线的变化规律。以湖南省望城县金城大道新建工程八曲河中桥为工程背景,运用给出的计算理论,计算出各板荷载的横向分布系数。本研究还制定了试验检测方案,比较了试验检测结果与理论结果,两者得到的结果接近,证明该方法是正确的。  相似文献   

16.
为提高装配式钢筋混凝土(RC)桥墩的抗震性能,提出采用现浇工程水泥基复合材料(ECC)和预制榫卯混合连接的新型接头构造;开展了3个采用混合接头连接(以现浇ECC段高度与凹槽深度为变化参数,编号为DZ-1、AC-200、XJ-250)和1个采用现浇ECC湿接缝连接(编号为PT-1)的装配式RC桥墩试件的拟静力试验;建立了经试验验证的ABAQUS有限元模型,分析了轴压比、长细比、凹槽深度、现浇ECC段高度等参数对装配式RC桥墩抗震性能的影响。分析结果表明:4个桥墩试件破坏模式均为压弯破坏,且各试件的ECC现浇段均未发生破坏;与PT-1试件相比,现浇ECC和预制榫卯混合连接装配式RC桥墩的峰值荷载增大了25.74%~30.03%,极限位移增大了22.75%~106.39%,残余位移下降了43.70%~61.42%,具有较好的抗震性能;AC-200试件的凹槽深度最大,其残余位移大于其他装配式桥墩,且耗能能力较差;装配式桥墩的峰值荷载和屈服荷载随轴压比、现浇ECC段高度的提高而提高,随着长细比的提高而下降;延性系数随着现浇ECC段高度的提高而提高,随着长细比、轴压比的提高而下降。建议混合连接的凹槽深度不宜超过凸榫边长的75%。  相似文献   

17.
针对轨道交通预制拼装桥墩的受力特点, 提出了采用灌浆套筒和预应力筋连接的拼装方案; 设计了3种不同类型桥墩, 包括整体现浇试件(RC)、预应力钢绞线和灌浆套筒连接的预制拼装试件(PCSS) 与精轧螺纹钢筋和灌浆套筒连接的预制拼装试件(PCTS), 采用拟静力试验方法分析了各种桥墩的各种拟静力指标, 比较了桥墩的抗震性能。试验结果表明: PCSS和PCTS试件的各指标非常接近, 最大误差为2.2%;灌浆套筒会使传统塑性铰区上移至套筒顶部, 说明灌浆套筒对传统塑性铰区域具有局部增强作用, 建议对塑性铰的箍筋加密区高度应额外增加1个套筒高度; 采用预应力筋使试件的混凝土轴压力增大了1倍, 相应的开裂荷载也增大了约1倍; PCSS试件的屈服荷载和极限荷载正负向均值比RC试件分别提高了31%和34%, 等效屈服位移、极限位移和偏移率均值分别比RC试件提高了17%、13%、13%, 但是PCSS试件的延性系数平均降低了10%;在偏移率为6%时, PCSS试件的残余位移均值是RC试件的61%, 显示了较好的自复位能力; 与RC试件相比, PCSS试件的刚度提高了13%。相比于精轧螺纹钢筋, 钢绞线可以适当弯曲与成束, 面积调整灵活, 因此, 采用无黏结预应力筋和灌浆套筒连接的桥墩试件具有良好的使用性能和抗震性能, 可作为预制拼装轨道桥墩的推荐方案。  相似文献   

18.
为了解决全无缝桥梁路桥连接板裂缝宽度与板内力过大等问题,将橡胶粉等体积部分替代细砂掺入应变硬化水泥基复合(SHCC)材料可制备低弹性模量的SHCC材料(LEM-SHCC),用于全无缝桥梁路桥连接板;进行了5种不同体积橡胶粉掺量(0、5%、10%、15%和20%)LEM-SHCC基本材性(密度、抗压强度和弹性模量)及拉伸性能试验,分析了橡胶粉掺量对LEM-SHCC的强度和变形性能的影响,并采用拉、压应变比差评价了橡胶粉掺量对SHCC材料的影响,获得了LEM-SHCC的最优配合比;针对橡胶粉掺量为15%的LEM-SHCC路桥连接板,研究了最不利荷载作用下(温降荷载)其吸纳变形能力、拉伸变形性能及开裂后裂缝分布规律,并与同尺寸SHCC路桥连接板的各项性能进行了比对;进行了LEM-SHCC路桥连接板的敏感参数(橡胶粉掺量、板底摩擦因数和板长等主要影响因素)有限元对比分析。研究结果表明:橡胶粉的掺入降低了SHCC的弹性模量,提升了SHCC的延性,当橡胶粉掺量达15%时,SHCC的弹性模量降低了40%,而延性却提升了近50%,且裂缝宽度有效地控制在60 μm以内;LEM-SHCC路桥连接板吸纳纵向变形达到10 mm时,LEM-SHCC路桥连接板表面微裂缝多(近180条),裂缝间距小(15~80 mm),且开裂后裂缝宽度控制在60 μm以内,此时张拉端板应力为2.1 MPa,锚固端锚固力为150.5 kN,卸载后裂缝闭合,无纤维被拉出或拉断;吸纳同样的纵向变形10 mm时,LEM-SHCC板的内力比同尺寸的SHCC板小;LEM-SHCC板的内力受橡胶粉掺量的影响较大,当其掺量为15%时,LEM-SHCC板性能最优,LEM-SHCC板的内力受板底摩擦因数的影响不大,板长的增加能有效地改善LEM-SHCC板的受力性能,推荐LEM-SHCC路桥连接板的设计长度为8.5 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号