首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, we report development of a DC glow discharge plasma(GDP) set-up to study controlled evolution of anodic structures having distinctive geometry, size and layers,generated in front of a positively biased electrode, submerged in unmagnetized plasma. For such an anodic structure, we have also investigated the condition under which the turbulence is triggered. Characteristic of these structures, generated in front of a positively biased electrode,depends on multiple parameters such as the ratio of anode to cathode size, electrode separation,gas pressure, biasing configuration such as anode bias, cathode bias and grounding schemes. We attempted to classify different anodic structures observed experimentally, as anode glow, fireball,anode spot, double layer and multiple double layers(MDLs) based on its physical characteristics.Among these structures the present investigation is focused on MDLs. The number of layers,observed in MDLs varied from as high as six to as low as zero, by controlling the operating discharge parameters, externally. Diagnostics were carried out using Langmuir probe. The analysis of floating potential fluctuations corresponds to a multiple anodic structure showed emergence of turbulence, at its critical stage, satisfying condition for self-organized criticality(SOC). This was identified with three slopes observed in the power spectrum, resembling the sand-pile model. Though, the GDP is completely different from that of the magnetically confined plasma, the nature of turbulence observed with SOC, is very similar to that observed in the scrape of layer of fusion devices. Therefore, the present investigation could provide new approach to study turbulence of similar nature, under an experimental condition that is free from the complexities of complicated field geometries used in confinement devices.  相似文献   

2.
Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.  相似文献   

3.
1 Introduction In ICP (inductively coupled plasma) sources, ca- pacitive coupling coexists with inductive coupling [1], since the radio-frequency (rf) current flowing in the coil should be driven by rf voltage, and the coil simul- taneously works as an rf electrode employed in CCP sources. The rf current driven by the coil rf voltage, namely capacitive current, circulates not only within the plasma but also in the external circuits connected to the grounded chamber wall of the plasma source.…  相似文献   

4.
The avoidance of runaway electrons (REs) generated during plasma disruption is of great concern for the safe operation of tokamak devices. Experimental study on the suppression of runaway current by electrode biasing (EB) and limiter biasing (LB) has been performed on the J-TEXT tokamak, which could be an alternative way to suppress the runaway current. The experimental results show that the higher the voltage value, the smaller the runaway current in both EB and LB experiments. The runaway current can be completely suppressed at an electrode biased voltage of +450 V and a limiter biased voltage of +300 V. The comparison of the energy spectra during the runaway plateau phase shows that the maximum energy max (ERE) and radiation temperature THXR of hard x-rays (HXRs) are significantly reduced after the application of +200 V limiter biased voltage. The electric field generated by the biased voltage may be the key factor to suppress the runaway current, and the measured radial electric field increases obviously after the voltage is applied. This may result in an increase in the loss of REs to realize the suppression of runaway current.  相似文献   

5.
One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining(EDM) is confinement of plasma due to Lorentz forces.This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single-and multiple-discharge EDM process.The model incorporates three main effects of the magnetic field,which include plasma confinement,mean free path reduction and pulsating magnetic field effects.Upon the application of an external magnetic field,Lorentz forces that are developed across the plasma column confine the plasma column.Also,the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes.As the mean free path of electrons reduces,more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs.The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10%over the respective experimental values.  相似文献   

6.
In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique. In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured. The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*. In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26× 1013 and 1.74× 1013 cm-3, which is in good agreement with the results measured by other techniques. This measurement technique can be conveniently applied to the diagnosis of metastableHe2* in an atmospheric-pressure plasma jet array.  相似文献   

7.
Photo ionization plays a critical role in the formation and propagation of atmospheric pressure plasma jet plumes. But in experiments, it is very difficult to observe the photo ionization due to its relative lower density of photo electrons. In the present study, we develop a portable cold air plasma jet device and observe the ionization wave in a dc spark air plasma jet. The discharge images acquired by an ICCD camera show that the ionization wave front performs as a quickly moving bright ball. Breakdown could take place at another side of the quartz plate or pork tissue layer(6 mm thick), which suggests that the ionization should be attributed to photo ionization.The laser schlieren images indicate there is propagation of a shock wave along with the plasma bullet. Based on the photo ionization theory and the photo-electric measurement, the direct photo ionization and multistage photo ionization are the main factors in charge of generating the cold air plasma jet. In addition, the plasma jet outside of the cathode nozzle is colder than 320 K and can be touched safely by a human. In view of the plasma jet including a large amount of active particles, such as NO, O, OH, emitted photons, etc, the proposed portable cold air plasma jet device could be qualified for plasma bio-medicine applications.  相似文献   

8.
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz(THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation(ADE) in the finite difference time domain(FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated.Finally, some potential applications for Terahertz waves in information and communication are analyzed.  相似文献   

9.
Electron sheaths have previously only been measured near a positively biased small electrode, in which a potential dip was often observed. In this paper, we present an experimental study on the electron sheath near a stainless steel plate in the presence of a weak electron beam. It is shown that the electron beam, though its density is much lower than that of the background plasma, will substantially alter the sheath structure, i.e., it causes the disappearance of the potential dip when the beam energy just exceeds the ionization potential of the neutral gas but later enhances the dip for higher energies. It is also shown that proper biases on the plate and chamber wall are the key to the formation of the electron sheath and the dip. For a fixed plate bias but with different electron beam energy, the measured thickness of the ion-free Child–Langmuir sheath agrees well with that of the theoretical model.  相似文献   

10.
In this article an investigation is presented on the properties of dust acoustic(DA)compressive solitary wave propagation in an adiabatic dusty plasma,including the effect of nonthermal positive and negative ions and non-isothermal electrons.The reductive perturbation method has been employed to derive the lower degree modified Kadomtsev-Petviashivili(mK-P),3D Schamel-Korteweg-de-Vries equation or modified Kadomtsev-Petviashivili(mK-P) equations for dust acoustic solitary waves in a homogeneous,unmagnetized and collisionless plasma whose constituents are non-isothermal electrons,singly charged positive and negative non-thermal ions and massive charged dust particles.The stationary analytical solutions of the lower degree mK-P and mK-P equations are numerically analyzed,where the effect of various dusty plasma constituents on DA solitary wave propagation is taken into account.It is observed that both the ions in dusty plasma play a key role in the formation of DA compressive solitary waves,and also the ion concentration and non-isothermal electrons control the transformation of the compressive potentials of the waves.  相似文献   

11.
There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel.The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel.The influences of segmented electrode placed at the ionization region on electric potential,ion number density,electron temperature,ionization rate,discharge current and specific impulse are discussed.The results show that,when segmented electrode is placed at the ionization region,the axial length of the acceleration region is shortened,the equipotential lines tend to be vertical with wall at the acceleration region,thus radial velocity of ions is reduced along with the wall corrosion.The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region.Furthermore,the electron-wall collision frequency and ionization rate also increase,the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.  相似文献   

12.
A reactive helicon wave plasma (HWP) sputtering method is used for the deposition of tungsten nitride (WNx) thin films. N2 is introduced downstream in the diffusion chamber. The impacts of N2 on the Ar-HWP parameters, such as ion energy distribution functions (IEDFs), electron energy probability functions (EEPFs), electron temperature (Te) and density (ne), are investigated. With the addition of N2, a decrease in electron density is observed due to the dissociative recombination of electrons with ${{\rm{N}}}_{2}^{+}.$ The similar IEDF curves of Ar+ and N2+ indicate that the majority of ${{\rm{N}}}_{2}^{+}$ stems from the charge transfer in the collision between Ar+ and N2. Moreover, due to the collisions between electrons and N2 ions, EEPFs show a relatively lower Te with a depletion in the high-energy tail. With increasing negative bias from 50 to 200 V, a phase transition from hexagonal WN to fcc-WN0.5 is observed, together with an increase in the deposition rate and roughness  相似文献   

13.
In a pulsed vacuum discharge, the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode. In this paper, the effects of resistance and capacitance on the anode side on the discharge characteristics and the generation characteristics of plasma jet are investigated. Results show that the existence of a resistor on the anode side can increase the anode potential, thereby preventing charged particles from entering the anode and promoting the ejection of charged particles along the axis of the insulating sleeve nozzle. The application of a capacitor on the anode side can not only absorb electrons at the initial stage of discharge, increasing the peak value of the cathode hump potential, but also prevent charged particles from moving to the anode, thereby improving the ejection performance of the plasma jet. In addition, the use of a larger resistance and a smaller capacitance can improve the blocking effect on charged particles and further improve the ejection performance of the plasma jet. Results of this study will provide a reference for the improvement of the ejection performance of plasma jets and their applications.  相似文献   

14.
Parameters of self-consistent magnetized dusty sheaths are investigated using computer simulations of a temporal evolution of one-dimensional slab plasma with dust particles. The evolution is caused by a collection of electrons and ions by both a wall (electrode) and dust particles, which are initially immersed into plasma and distributed in front of the electrode. Obtained results show the existence of oscillations of a self-consistent potential in magnetized dusty sheaths including boundary potentials. Dust particles weaken magnetized sheaths and create additional sheaths close to a boundary of dust particles. The magnetic field does not influence on the dust particle charge.  相似文献   

15.
In the present study, a coaxial transmission line resonator is constructed, which is always capable of generating cold microwave plasma jet plumes in ambient air in spite of using argon, nitrogen, or even air, respectively. Although the different kinds of working gas induce the different discharge performance, their ionization processes all indicate that the ionization enhancement has taken place twice in each pulsed periods, and the electron densities measured by the method of microwave Rayleigh scattering are higher than the amplitude order of 1018 m−3. The tail region of plasma jets all contain a large number of active particles, like NO, O, emitted photons, etc, but without O3. The formation mechanism and the distinctive characteristics are attributed to the resonance excitation of the locally enhanced electric fields, the ionization wave propulsion, and the temporal and spatial distribution of different particles in the pulsed microwave plasma jets. The parameters of plasma jet could be modulated by adjusting microwave power, modulation pulse parameters (modulation frequency and duty ratio), gas type and its flow rate, according to the requirements of application scenarios.  相似文献   

16.
The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. We also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region.  相似文献   

17.
The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.  相似文献   

18.
We created an ultracold plasma by photoionizing the laser-cooled and trapped rubidium atoms in a magneto-optical trap.In the externally applied direct current (DC) electric field environment,the electrons which escape from the potential well of the ultracold plasma were detected for different numbers of the ions and initial kinetic energies of the electrons.The results are in good agreement with the calculations,based on the Coulomb potential well model,indicating that the external DC field is an effective tool to adjust the depth of potential well of the plasma,and it is possible to create an ultracold plasma in a controlled manner.  相似文献   

19.
Inductively coupled radio-frequency (RF) plasma neutralizer (RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RPN are related to the bulk plasma parameters and the device's geometry.Therefore,the effects of different electron-extraction apertures and operational parameters upon the electron-extraction characteristics are investigated according to the global nonambipolar flow and sheath model.Moreover,these models can also be used to explain why the electron-extraction characteristics of the RPN strongly depend upon the formation of the anode spot.During the experimental study,two types of anode spots are observed.Each of them has unique characteristics of electron extraction.Moreover,the hysteresis of an anode spot is observed by changing the xenon volume-flow rates or the bias voltages.In addition,the rapid ignited method,gas-utilization factor,electron-extraction cost and other factors that need to be considered in the design of the RPN are also discussed.  相似文献   

20.
Different shapes of dielectric packing beads could affect streamer propagating direction,plasma streamer behavior,and streamer types,such as surface discharge,surface-to-surface discharge,and volume discharge.In this paper,a 2D particle-in-cell/Monte Carlo collision model is used to investigate the effect of the bead shapes on streamer characteristics in packed-bed dielectric barrier discharges.We calculate the electron density,ion density,excitation rate,ionization rate and the electric field with different bead shapes in two cases of seed electron configurations.The results demonstrate that both the configurations of seed electrons and the shape of beads could influence plasma properties.In the case of seed electrons located directly above the beads,the streamer cannot be generated with square beads,while weak surface ionization waves(SIWs)are developed with circle and triangle beads,when the distance between the seed electrons and the upper plate is as close as 0.02 mm.Whereas,the distance between the seed electrons and the upper plate is 0.06 mm,the streamers can be generated with all three bead shapes,but SIWs are still weak.This is because different shapes of beads induce different electric field and surface charging along the dielectric bead surfaces,determining the generation of SIWs.In the case of seed electrons placed between two beads,streamers can propagate in all three bead shape configurations,and the SIWs are enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号