首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p < 0.001). Additionally, greater zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement.  相似文献   

2.
OBJECTIVES: The purpose of this study was to assess how ceramic disc thickness and curing mode (light or chemical) affects the polymerization shrinkage of dual-cured resin cements and to evaluate the effect of the ceramic discs on the curing speed of the cements during light exposure. METHODS: Six commercial resin cements, RelyX ARC, Bistite II, Duolink, Panavia F, Variolink II and Choice were used. Filler weight contents were determined by the ash method. Four ceramic discs with thicknesses of 0.5, 1, 2 and 4mm, respectively, were made. The attenuation of light intensity due to the ceramic discs was measured using a radiometer. The polymerization shrinkage kinetics of the resin cements by chemical or light cure through the different ceramic discs was measured using a bonded-disc method. RESULTS: There were differences in filler content among brands of resin cement. The polymerization shrinkage without ceramic disc was 2.61-4.59% by chemical cure and 2.93-4.66% by light cure. The polymerization shrinkage of RelyX ARC and Panavia F by chemical cure was statistically lower than by light cure (p<0.05). Polymerization shrinkage and filler weight were inversely related (R=-0.965). Both the transmitted light intensity and polymerization shrinkage decreased with increasing thickness of ceramic discs (p<0.05). The time to reach the maximum shrinkage rate of the resin cements increased with increasing ceramic thickness. The cure speed by light cure was 15-322 times faster than by chemical cure. SIGNIFICANCE: The polymerization shrinkage kinetics of dual-cured resin cements significantly differed between brands under various curing conditions. Clinicians should be aware of the setting characteristics of the cements, so they can choose the optimal materials for different clinical situations.  相似文献   

3.
Chemical versus dual curing of resin inlay cements   总被引:5,自引:0,他引:5  
Dual-cure inlay resin cements polymerize both chemically and through light activation; however, clinically some aspects of the cement are not readily accessible to the light source. This study investigated the degree of cement hardening achieved through chemical curing only versus dual curing and the effect of inlay thickness on cement hardness. Disks 6 x 2.5 mm were prepared from seven commercially available cements. Eight specimens were prepared from each material; half of the specimens were cured chemically only, and the remainder were dual-cured. Knoop hardness measurements were then recorded at 1-hour, 1-day, and 1-week intervals. In addition, 24 specimens of the same dimensions were prepared from each cement. Twelve specimens were dual-cured through resin composite spacers of varying thicknesses (1 to 6 mm), and the others were cured through similar ceramic spacers, and hardness measurements were recorded. Multivariate analysis of variance revealed significant differences in hardness of chemically cured versus dual-cured specimens at the 5% level of significance for all examined cements. Significant differences were also found in the hardness of specimens dual cured through ceramic or resin composite spacers 2 to 3 mm in thickness or more versus those that were dual cured without spacer regardless of the spacer material. It is concluded that chemical curing alone was not sufficient to achieve maximum hardening of the examined cements. Cement hardness was significantly reduced when inlay thickness was 2 to 3 mm or more.  相似文献   

4.
PURPOSEThis study aimed to investigate the Vickers Hardness Number (VHN) of light- and dual cured resin cements cured through monolithic zirconia specimens (VITA YZ) of various translucencies: translucent (T); high translucent (HT); super translucent (ST); and extra translucent (XT) at 0, 24, and 48 h after curing.MATERIALS AND METHODSFour zirconia specimens from each translucency were prepared. Two light-cured resin cements (Variolink N LC; VL and RelyX Veneer; RL) and two dual-cured resin cements (Variolink N DC; VD and RelyX U200; RD) were used. The cement was mixed and loaded in a mold and cured for 20 s through the zirconia specimen. The upper surface of cements was tested for VHN using a microhardness tester at 0, 24, and 48 h after curing. The VHN were analyzed using two-way repeated, Brown-Forsythe ANOVA with Games Howell post-hoc analysis and independent t-tests (P < .05).RESULTSAll cements showed significantly higher VHN from 0 h to 24 h (P < .001). At 48 h, the VHN of light-cured cements were significantly lower when cured under the T groups than under XT groups (P = .001 in VL, P = .014 in RL). At each post curing time of each translucency, VD showed higher VHN than VL (P < .05), and RD also showed higher VHN than RL (P < .05).CONCLUSIONThe translucency of zirconia has an effect on the VHN for light-cured resin cements, but has no effect on dual-cured resin cements. Dual-cured resin cement exhibited higher VHN than the light-cured resin cement from the same manufacturer. All resin cements showed significantly higher VHN from 0 h to 24 h.  相似文献   

5.

PURPOSE

The aim of this Fourier transform infrared (FTIR) spectroscopic study was to measure the degree of conversion (DC) of dual-cured resin cements light-irradiated through zirconia ceramic disks with different thicknesses using various light-curing methods.

MATERIALS AND METHODS

Zirconia ceramic disks (KT12) with three different thicknesses (1.0, 2.0, and 4.0 mm) were prepared. The light transmittance of the disks was measured using ultraviolet visible near-infrared spectroscopy. Four different light-curing protocols were used by combining two curing light modes (Elipar TriLight (standard mode) and bluephase G2 (high power mode)) with light-exposure times of 40 and 120 seconds. The DCs of the two dual-cured resin cements (Duo-Link and Panavia F2.0) light-irradiated through the disks was analyzed at three time intervals (3, 7, and 10 minutes) by FTIR spectroscopy. The data was analyzed using repeated measures ANOVA (α=.05).Two-way ANOVA and Tukey post hoc test were used to analyze the 10 minute DC results.

RESULTS

The 1.0 mm thick disk exhibited low light transmittance (<25%), and the transmittance decreased considerably with increasing disk thickness. All groups exhibited significantly higher 10 minute DC values than the 3 or 7 minute values (P<.05), but some exceptions were observed in Duo-Link. Two-way ANOVA revealed that the influence of the zirconia disk thickness on the 10 minute DC was dependent on the light-curing methods (P<.001). This finding was still valid even at 4.0 mm thickness, where substantial light attenuation took place.

CONCLUSION

The curing of the dual-cured resin cements was affected significantly by the light-curing technique, even though the additional chemical polymerization mechanism worked effectively.  相似文献   

6.

Objective

Purposes of this in vitro study include evaluating colour changes in combinations of feldspathic porcelain and cement resulting from different thicknesses of porcelain and different shades of composite luting agent, and evaluating relative translucency parameter (RTP) values.

Materials and methods

Porcelain discs of shade A1 at nominal thicknesses of 0.5 and 1.0 mm were bonded to cements of three shades in a factorial design. Colours were calculated for CIE D65 Illuminant and Standard Human Observer on black, grey and white backings. A colour difference (CD) was calculated of each possible pair of different porcelain thickness values for the same cement shade and each possible pair of different cement shades for the same porcelain thickness. RTP was analyzed by ANOVA and selected pairwise comparisons.

Results

All mean CDs studied were perceptible and most were at or greater than the clinical acceptability threshold, with the notable exception that the mean CDs and their confidence limits were below the clinical acceptability threshold for a change in porcelain thickness when utilizing the Clear cement shade. Variation in the shade of the resin luting cement will result in CDs which are near or beyond clinical acceptability. A decrease in porcelain thickness did significantly increase RTP when bonded to the resin cement shades studied.

Conclusion

Changes in porcelain thickness or cement shade may adversely affect basic aesthetic properties of these materials. Development of methods for analyzing aesthetic effects over greater ranges of thickness for these materials would improve the prognosis for using these materials.  相似文献   

7.
Abstract

Objective. The aim of this study was to investigate the effect of resin cement selection on the microtensile bond strength (μTBS) of adhesively veneered 3Y-TZP. Materials and methods. 3Y-TZP discs were fabricated from commercial powders and treated by sandblasting and zirconia primer. Porcelain discs were sectioned from a feldspathic block and conditioned with 5% HF and silane agent. Pre-treated surfaces of zirconia and porcelain discs were bonded together using one of the three following resin cements: Multilink N (MN), Panavia F (PA) or RelyX Unicem (RU), respectively. After light-curing the joined discs were cut into microbars where 15 microbars per group were randomly chosen for μTBS test until failure occurred (24 h storage in water in advance, crosshead speed of 0.5 mm/min). The data were analysed by one-way ANOVA and Tukey's test (p < 0.05). Fractured zirconia surfaces were examined using both a stereomicroscope and scanning electron microscope to identify the failure mode. Results. Significant differences in the μTBS values among three groups were found (p < 0.001) and the descending order was PA, RU and MN. No zirconia or feldspathic failure occurred, but the zirconia/cement interfaces suffered from fracture for all samples. Cement cohesive failure and/or feldspathic/cement interfacial failure sometimes were involved. Failures were mainly adhesive for RU, while they were mixed for MN and PA. Conclusion. When using the adhesive veneering method, Panavia F offers better bond strength than Multilink N or RelyX Unicem, which is probably due to the content of the 10-methacryloyloxydecyl dihydrogenphosphate (10-MDP) monomer.  相似文献   

8.
Objectives

The aim of this study was to evaluate the physical and mechanical properties of different dual functional cements.

Materials and methods

Three dual functional cements (Allcem Core (FGM), Rebilda DC (VOCO), and LuxaCore Z (DMG)), a luting resin cement (Rely X ARC (3 M ESPE)), and a Core Buildup composite resin GrandioSo (VOCO) were used. Flexural strength (n = 10) and film thickness (n = 6) were evaluated according to ISO 4049:2009. Flow (n = 6) was evaluated according to ISO 6876:2001. Degree of conversion (DC) was assessed immediately and 24 h after polymerization (n = 5). For resistance to dislodgment (RD) analysis, bovine teeth were prepared to receive fiber glass posts, and a push-out test (n = 12) was used.

Results

Luxacore Z presented lower flexural strength when compared to GrandioSo (p < 0.001). No statistical difference was found between cements for film thickness (p = 0.66). Reduced flow values were found for Allcem Core (p = 0.006). No statistical difference was found for immediate DC for different cements (p > 0.05). After 24 h, DC increased for all groups, except for Luxacore Z (p = 0.054). The RD did not differ from the control Rely X ARC, regardless of the root third (p > 0.05). Luxacore Z showed lower mean values in the apical third compared to the coronal third (p = 0.046).

Conclusions

The dual functional cements (Allcem Core and Rebilda DC) possessed similar physical and mechanical properties of luting resin cement (RelyX ARC) and Core Buildup composite resin (GrandioSo). Hence, they could be used for one-stage post and core buildup restorations.

Clinical relevance

The dual functional cements could be used for one-stage post and core buildup restorations since they possess similar physical and mechanical properties of luting resin cements and Core Buildup composite resin.

  相似文献   

9.

Objectives

This study aimed to assess the bi-axial flexural strength of two dual-polymerizing resin luting agents cemented to human dentin when photo-activated with different light-curing units.

Materials and methods

Two dual-cured resin cements: choice (CH) and Variolink II (VL) were tested. Hybrid composite resin (Z-250) discs (12 × 1.5 mm) were fabricated. Three types of light-curing units were used halogen-curing unit (QTH), light-emitting diode (LED) and plasma arc (PAC). Sixty dentin discs of 0.5 mm thickness were prepared from extracted human teeth. A circular mold (2.5 mm in height and 12 mm diameter) was utilized to create supporting structure for dentin, resin cement complex. The resin luting cement (0.5 mm) was placed on the previously prepared dentin discs and covered with the prefabricated composite discs. Photo-activation of cements was performed for 40 s with QTH and LED units and for 3 s with PAC. The specimens were divided into 12 groups (20 specimens for each light source). Six groups were kept in distilled water for 24 h and the rest were stored for 6 weeks. Bi-axial flexural strength was determined using Instron machine. The data was analyzed using two-way ANOVA and Tukey test for comparison.

Results

The findings indicated that the bi-axial flexural strength values for both cements CH and VL were higher for 24 h over 6 weeks but not statistically significant when cured with QTH. Meanwhile, when LED light was used for photo-activation the cements, the flexural strength values reported were statistically higher of 24 h over 6 weeks storage at P = 0.4E−6 However, PAC light did not record any statistically significant difference between two duration for the CH cement although when used for polymerization of VL the reported value for 6 weeks were statistically significantly higher value than 24 h duration at P = 0.002.

Conclusion

When high immediate flexural strength is preferred in clinical situation photo-activation the cements with LED reported the greatest value.  相似文献   

10.
This study investigated the Knoop hardness of a thin layer in three dual-cured resin cements (Linkmax HV, Nexus 2, and Variolink II HV) irradiated through or not through different thicknesses (1 through 5 mm) of a machinable ceramic. Hardness was recorded at a series of time intervals up to five days, starting from the end of a light irradiation period. Increase in hardness was more rapid over the first 0.5 hour; thereafter it continued at a low rate until maximum hardness was attained. Ceramic thickness had a significant influence on hardness in all dual-cured resin cements, especially when ceramic thickness was more than 4 mm. In addition, it was noted that the polymerization of Nexus 2 seemed to be more dependent on light exposure compared with the other two materials. Variolink II HV and Linkmax HV, on the other hand, seemed to indicate the potential of being compensated by chemical curing to some degree.  相似文献   

11.
《Dental materials》2020,36(11):e340-e351
ObjectiveTo evaluate the effect of exposure time and moving the light-curing unit (LCU) on the degree of conversion (DC) and Knoop microhardness (KH) of two resin cements that were light-cured through ceramic.MethodsTwo resin cements: AllCem Veneer APS (FGM) and Variolink Esthetic LC (Ivoclar Vivadent) were placed into a 0.3 mm thick matrix in 6 locations representing the canine to canine. The resins were covered with 0.5 mm thick lithium disilicate glass-ceramic (IPS e.max CAD, Ivoclar Vivadent). A motorized device moved the LCUs over the ceramic when the LCU was on. Two single-peak LCUs: Elipar DeepCure-L (3M Oral Care) and Emitter C (Schuster), and one multi-peak: Bluephase G2 (Ivoclar Vivadent) were used with 3 different exposure protocols: a localized exposure centered over each tooth for 10 or 40 s; moving the tip across the 6 teeth for a total exposure time of 10 or 40 s; and moving the tip across the 6 teeth resins for a total exposure time of 60 or 240 s. After 24 h, the DC and KH were measured on the top surfaces and the data was analyzed using three-way ANOVA and Tukey’s tests (α = 0.05).ResultsInterposition of 0.5 mm of ceramic reduced the irradiance received by the resin by approximately 50%. The 40 s localized exposure over each tooth always produced significantly higher DC and KH values. Moving the LCUs with a total exposure time of 10 s resulted in the lowest DC and KH. There was no beneficial effect on the DC or KH when the multi-peak (violet-blue) LCU (Elipar DeepCure-L or Bluephase G2), but the lower light output from a small tip LCU reduced the DC and KH values (Emitter C).SignificanceMoving the LCUs when photo-curing light-cured resin cements is not recommended. This study showed that a single-peak LCU could activate a resin cement that uses Ivocerin™ as well as the multi-peak LCU.  相似文献   

12.

Objectives

To use profilometry to assess the margin surface profile of all-ceramic crowns (ACC’s) at try-in and 1-week after cementation with dual-cured resin (DC, RelyX ARC, 3 M ESPE, St. Paul, MN, USA), self-adhesive dual-cured resin (SADC, RelyX Unicem, 3 M ESPE), light-cured resin (LC, RelyX Veneer, 3 M ESPE) or chemically cured resin-modified glass ionomer (RMGI, RelyX Luting Plus, 3 M ESPE) luting cement.

Methods

Forty, sound, extracted, human, premolar teeth underwent a standardised preparation for ACC’s. IPS Empress (Ivoclar-Vivadent, Liechtenstein) crowns of standard dimensions were fabricated and 10 luted with each cement and stored in water for 7 days. Three groups of serial profiles were taken, the first of the tooth preparation, the second of the crown margins at try-in and lastly of the crown margins after cementation and 7 days water storage.

Results

There were no significant differences in the crown margin surface profile between the four cement groups at try-in. The change in crown margin position between try-in and post-cementation was significantly greater for DC than for LC and RMGI. SADC was not significantly different to the other cements. There were no significant differences in the crown margin extensions between the four cement groups, however most of the IPS Empress ACC’s in this study were underextended but this was not statistically significant.

Conclusions

IPS Empress ACC’s seated more fully with LC and RMGI than with DC cement.  相似文献   

13.
PurposeThe stress relaxation and compressive strength of resin, resin-modified glass ionomer, glass ionomer, polycarboxylate, and zinc oxide eugenol cements were measured to determine the characteristics of these materials after setting.MethodsA total of 19 luting cements including 12 permanent cements and 7 temporary cements were used. Cylindrical cement specimens (10 mm long and 6 mm in diameter) were obtained by chemical setting or light curing. The specimens were stored for 24–36 h in water at 37 °C and were then used for the stress relaxation and compression tests. The stress relaxation test was carried out using three constant cross-head speeds of 5, 50, and 100 mm/min. Upon reaching the preset dislocation of 0.5 mm, the cross-head movement was stopped, and the load was recorded for 60 s. Fractional stress loss at 1 s was calculated from the relaxation curves. The compressive strength and modulus were measured at a cross-head speed of 1 mm/min. Data were analyzed with the Kruskal–Wallis test and Holm's test.ResultsA zinc oxide eugenol cement [TempBOND NX] exhibited the largest fractional stress loss. A resin cement [ResiCem] showed the largest compressive strength, while a glass ionomer cement [HY-BOND GLASIONOMER CX] showed the largest compressive modulus among all tested cements (p < 0.05).ConclusionThe fractional stress loss could not be classified by the cement type. Two implant cements [Multilink Implant and IP Temp Cement] showed similar properties with permanent resin cements and temporary glass ionomer cements, respectively. Careful consideration of the choice of cement is necessary.  相似文献   

14.
The influence of porcelain thickness and opacity on the polymerization of two dual activated (microfine and hybrid) and one light irradiated (hybrid) resin cements was assessed by hardness measurements. The surface microhardness values of the upper and lower surface of l mm thick resin cement specimens were determined. Specimens were polymerized using 40 s irradiation beneath different thicknessses and opacities of porcelain discs. The results showed that increasing the thicknesses and opacity of the porcelain produced a statistically significant decrease in microhardness of the resinbased cements. The effect of attenuation is less for the microfine cement than for the hybrids. In the case of hybrid cements, the light activated material performed better than the dual activated cement.  相似文献   

15.
《Dental materials》2022,38(6):1072-1081
ObjectivesThis study was designed to investigate CAD/CAM restorative blocks and other resin-based materials by (i) determining their chemical composition, (ii) comparing their radiopacity and (iii) correlating their radiopacity with specimen thickness.MethodsDisk specimens, of 1and 2 mm thickness (n = 3), were prepared from five CAD/CAM and six resin-based composites (RBCs). The CAD/CAM resin-composites included aesthetic types: CeraSmart (CS), Grandio Blocs (GB), Lava Ultimate (LU), plus a polymer infiltrated ceramic Vita Enamic (VE), and a feldspathic ceramic Vita Mark II (VM II). The six RBCs were for different clinical applications: direct filling, flowable, bulk fill, base and two luting cements. The specimens were radiographed alongside an aluminium step wedge and a tooth section. Digital images were analysed, and the radiopacity of each specimen was determined according to ISO 1311/2014. Statistical analyses of radiopacity, expressed as mm Al (n = 15), were carried out using the Kruskal-Wallis test followed by pairwise comparisons (α = 0.05).ResultsRadiopacities of CAD/CAM materials were, in ascending order, VE, VM II, CS, LU, and GB. At 1 mm thickness, the radiopacities of all CAD/CAM specimens were matching or slightly lower than enamel. At 2-mm thickness, the resin composite blocks were significantly more radiopaque than the ceramics VE and VM II (p < 0.0001). No statistically significant differences in radiopacity were detected between the 1-mm thick infiltrated ceramic, enamel, dentin and various resin composites except for filling and bulk fill types. The radiopacity of polymer-infiltrated ceramics was low despite the presence of radiopacifying elements and high filler content.SignificanceIdentifying thin restorations in standard radiographs is necessary with the development and expanded application of ‘digital’ dental materials in restorative treatment. This study confirmed the joint influence of composition and thickness on radiopacity. CAD/CAM restorative materials showed thickness-dependant radiopacity. But polymer-infiltrated ceramics were fairly radiolucent. There is a need to revisit radiopacity requirements for CAD/CAM restorative materials.  相似文献   

16.
《Dental materials》2022,38(12):2003-2013
ObjectiveTo characterize the effect of pigmentation techniques on the fatigue behavior of a 4YSZ ceramic adhesively luted onto dentin analog (glass fiber-reinforced epoxy resin).Methods4YSZ ceramic discs (Ø= 10 mm, 1 mm thickness) were allocated into 5 groups: Ctrl – unshaded (IPS e.max ZirCAD MT BL); Manuf – shaded by the manufacturer (IPS e.max ZirCAD MT A2); Brush – unshaded pigmented, pre-sintering, using a brush; Stain – unshaded pigmented, post-sintering, during glaze application; Brush+Stain – combination of both techniques. Color assessments ensured the same perceived color (Vita Classical A2). Dentin analog discs (Ø= 10 mm, 2.5 mm thickness) were obtained, paired with the 4YSZ discs, and adhesively luted using a resin cement. Cyclic fatigue testing (n = 15) was run (20 Hz; 10,000 cycles/step, initial load 200 N; step-size 100 N up to 700 N; then 50 N until specimen failure). Fractographic, roughness and topography analyses were performed.ResultsNo statistical (p > 0.05) detrimental influence were observed for fatigue outcomes (Ctrl = Manuf = Brush = Stain = Brush+Stain). However, the Brush+Stain technique induced inferior statistical (p < 0.05) fatigue performance compared to Stain. All failures were radial cracks with origin at the ceramic intaglio surface. The staining technique triggered statistically higher roughness (p < 0.05). Uniformly sized zirconia crystals were seen in the Ctrl, Manuf and Brush groups, and a smooth vitreous surface with encrusted pigments in the Stain and Brush+Stain groups.SignificancePigmentation techniques (Vita Classical A2 shade) have no detrimental effect on the mechanical fatigue properties of 4YSZ ceramic adhesively luted onto dentin analog.  相似文献   

17.
The aim of this study was to evaluate, in vitro, the biaxial flexural strength (ISO 6872) of a feldspathic ceramic (VM7, Vita Zahnfabrik) coated with a resin cement with different thicknesses and polymerization mode. Control groups consisted in VM7 with and without acid etching with 10% hydrofluoric acid for 1 min. Experimental groups comprised VM7 etched, silanated and coated with Variolink II (Ivoclar Vivadent) cement, that was polymerized through the porcelain in light-cure and dual-cure modes, with thickness ≤150 μm or >150 μm. The specimens (n=15) were subjected to the biaxial flexural strength essay and analyzed fractographically. Parametric (Dunnet, Anova 2-way, Tukey) and non-parametric tests (Weibull) were used to evaluate results. Ceramic disks coated with resin cements of either activation modes and thicknesses exhibited higher flexural strength while the Weibull moduli did not present significant differences for a confidence interval of 95%.  相似文献   

18.
《Dental materials》2019,35(7):1007-1016
ObjectiveTo evaluate the reliability and failure mode of zirconia-reinforced lithium silicate (ZLS) molar crowns of different thicknesses.MethodsMonolithic ZLS molar crowns (0.5 mm, 1.0 mm, and 1.5 mm thickness) were modeled and milled using a CAD/CAM system (n = 21/group). Crowns were cemented on dentin-like epoxy resin replicas with a resin cement. The specimens were subjected to single load-to-failure test for step-stress profiles designing. Mouth-motion step-stress accelerated-life test was performed under water by sliding an indenter 0.7 mm lingually down on the distobuccal cusp until specimen fracture or suspension. Use level probability Weibull curves and reliability were calculated and plotted. Polarized-light optical microscope and scanning electron microscope (SEM) were used to characterize fracture patterns.ResultsIrrespective of crown thickness, beta (β) values were higher than 1 and fatigue accelerated failures. While 0.5 mm ZLS crowns exhibited a significant reduction in the probability of survival at 200 N, 300 N and 400 N mission loads (69%, 41% and 19%, respectively), no significant difference was observed between 1.0 mm and 1.5 mm crowns. Both thicknesses have maintained the survivability at approximately 90%. Failure primarily comprised bulk fracture where radial cracks originated from the cementation surface beneath the indenter loading trail and propagated towards the cervical margin.Significance1.5 mm- and 1.0 mm-thickness monolithic ZLS crowns presented higher probability of survival compared to 0.5 mm crowns. Bulk fracture was the chief failure mode, regardless of thickness.  相似文献   

19.
This study intended to evaluate the effect of digital veneering on four-point flexural strength (FS) and microtensile bond strength (μTBS) of veneered zirconia. Two different zirconia blocks, a lithium disilicate and a feldspathic ceramic block, and two different layering ceramics were used. IPS e.max Zir CAD (ZC) and Vita In-Ceram YZ (YZ) with yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) were used as substructures. IPS e.max CAD (LD), Vita Mark II (VMII), IPS e.max Ceram (EC) and Vita VM9 (VM9) were used for veneering. Resin cement and fusion ceramic were placed between veneer and zirconia substructure for digital veneering. A total of one hundred and fifty specimens in five groups (n = 30) were prepared for FS and tested in universal machine at 1.0 mm/min. One hundred specimens in five groups (n = 20) were obtained for the μTBS and tested at 1.0 mm/min. Statistical analysis was made by one way ANOVA and Tukey HSD. Conventional veneering showed statistically significant FS. ZC veneered with EC had the highest mean FS and the lowest was obtained in groups veneered through resin cement. YZ layered with VM9 had the highest mean μTBS. ZC veneered through fusion ceramic and YZ veneered through resin cement showed significantly lower and similar μTBS.  相似文献   

20.
《Dental materials》2022,38(1):194-203
ObjectiveTo explore the effect of curing modes of dual-cure resin cements on their degree of conversion (DC) and polymerization shrinkage (PS) over specific post-activation periods.MethodsFive self-adhesive (PANAVIA SA, RelyX Universal Resin, RelyX Unicem 2, Bifix SE, and SpeedCEM Plus) and three conventional (PANAVIA V5, Nexus Third Generation, and RelyX Ultimate Universal) dual-cure resin cements were studied. Four specimens (n = 4) were made per curing mode (light/self-cure) to measure either DC or PS. FTIR was utilized to measure real-time DC (%) over 24 h. The Bonded Disk method was used to measure shrinkage at 23 °C over 1 h. The data were analyzed using one-way ANOVA, Tukey post-hoc tests and independent/ paired sample t-tests (a = 0.05).ResultsAfter 1 h post-activation, the DC of light-cured (LC) specimens ranged between 66.6% and 77.4%, whereas for self-cured (SC) specimens DC ranged between 44.4% and 73.2%. After 24 h, the DC of LC specimens ranged between 74.8% and 82.4% and between 62.7% and 81.7% for SC specimens. After 24 h, the DC of three cements (BSE, PV5, and RXU) were comparable between their curing modes (p > 0.05), whereas five cements (CEM, NX3, PSA, RXU2, RXL) had significantly lower DC for SC compared to LC specimens (p < 0.05).After 1 h post-activation, shrinkage ranged between 5.9% and 8.5% for LC and between 4.9% and 8.3% for SC specimens. Most cements were not significantly different between curing modes. However, light-cured PAS, RXL and RXU2 had significantly higher shrinkage (p < 0.05). After 1 h post-activation, a strong positive correlation existed between conversion and shrinkage (LC: r2 = 0.95 and SC: r2 = 0.93).SignificanceWhenever light access is possible, light-curing of resin-cements remains beneficial to the overall efficacy of their conversion and thus all factors that depend on that. Conversion and shrinkage behavior are intrinsically important factors in clinical selection of resin-cement products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号