首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 56 毫秒
1.
崂山顶、涧、沟、坡、麓、滩、岬-带巨砾成因研究   总被引:2,自引:1,他引:2  
崂山的地貌景观十分复杂,形成众多的奇山异石。研究发现:更新世期间,崂山发生过多次古冰川作用.从水下到山巅都留下古冰川活动的印记。崂山的冰碛物具有不成层、无分选、杂乱无章、大小不一、由带有磨光面的、个体差别很大的和带有棱角的岩块、砂等堆积而成,部分冰碛物伸入海下。崂山古冰川冰碛物的堆积地貌主要有终碛堤、冰碛丘陵和侧碛堤三种类型。崂山古冰川侵蚀地貌有:(1)拖蚀(拔蚀)岩块;(2)磨光面;(3)古冰斗;(4)“刃脊”、角峰、哑口;(5)削断山嘴“U”型谷;(6)冰臼。崂山低海拔古冰川遗迹的发现,对研究崂山地貌演化和第四纪黄渤海陆架环境变迁。具有十分重要意义。  相似文献   

2.
人工砾石海滩变化及输移率研究   总被引:1,自引:0,他引:1  
在我国采用砾石海滩在某些强动力区域进行海滩养护是一种新的尝试,具有很好的适用性。以厦门天泉湾人工砾石滩为研究对象,对2015年至2016年间10条海滩剖面开展了5次周期性监测,通过综合分析,得出在人工砾石滩竣工完成后的一年时间内,滩肩外沿线、岸线及滩面底角的砂砾分界线大幅度后退,滩肩宽度变窄;滩肩外沿线明显隆起,形成滩肩脊线;滩面坡度变大,且上游侧海滩的滩面普遍比下游侧海滩的滩面陡,一年后,岸滩整体变化趋于稳定。针对砾石滩不断向西南方向运移的现状,采用Leo C.van Rijn输移率公式计算砾石滩年平均输移率,并通过测量断面法、体积变化量法对Leo C.van Rijn公式计算结果进行验证,得出砾石滩年平均输移率的范围约为1 015.66~2 392.5 m~3/a。  相似文献   

3.
海滩剖面设计参数确定和稳定性评价是设计阶段确保海滩养护工程质量的重要指标。针对大连凌水湾砾石海滩养护工程,综合采用Dean平衡剖面原则和剖面类比法进行剖面设计,确定了填砂中值粒径、施工坡度、滩肩前沿高程和滩肩宽度等设计参数;结合物理模型试验进行了剖面形态稳定性分析,研究了海滩在不同波浪和水位作用下的剖面形态演化过程,试验结果表明不同工况条件下,平均低水位以上的滩面均为净淤积,水下部分侵蚀明显,滩面上部泥沙不断堆积,砾石海滩最终形成稳定剖面。研究结果可为类似砾石海滩养护工程设计提供参考。  相似文献   

4.
In recent years, several attempts to stabilize the beach by control of the percolation of water have been proposed. However, morphodynamics in the surf zone is still not clear because of the complexity of wave actions and sediment transport. Especially, there is a little research on gravel beach morphodynamics including wave breaking in the surf zone. The present study investigates experimentally how groundwater level influences topographic changes in a gravel beach and simulates numerically the wave fields and flow patterns in the surf zone, considering the porosity of the media and the presence of groundwater. In experiments, water-level control tank was designed to control the simulated groundwater elevation and the wave flume was divided into two parts to maintain a constant mean water level. The experimental results show that the berm formed in the upper portion of the shoreline moves up the beach as the groundwater level falls and the lower the groundwater level, the steeper the beach surface. The numerical model was developed to clarify these features capable of simulating the difference of groundwater and mean water level. Numerical results showed different flow patterns due to the groundwater elevation; wave run-up weakens and wave run-down strengthens by the seaward currents caused by elevated groundwater. These deformations of the flow pattern explain well how the beach profile is affected by the groundwater elevation.  相似文献   

5.
In this work, the large-wave simulation (LWS) method is adapted for application in spilling wave breaking over a constant slope beach. According to LWS, large scales of velocities, pressure and free-surface elevation are numerically resolved, while the corresponding unresolved scale effects are taken into consideration by a subgrid scale (SGS) model for wave and eddy stresses. The model may be not fully applicable in very shallow water, close to the shoreline, where the unresolved, turbulent, free-surface oscillation is of the same order with the water depth. Time integration of the Euler equations is achieved by a two-stage fractional scheme, combined with a hybrid scheme for spatial discretization, consisting of finite difference and pseudospectral approximation methods. Model parameters are calibrated by comparison to available experimental data of free-surface elevation and velocities in the surf zone for cross-shore incoming waves. The action of the wave SGS stresses in the outer coastal and surf zones initiates breaking and generates appropriate vorticity, in the form of an eddy structure (surface roller), at the breaking wavefront. At incipient breaking, both advection and gravity contribute to the vorticity flux at the free surface, while only after the full development of the surface roller, the effect of advection becomes stronger. The SGS model is also utilized to simulate propagation, refraction and breaking of oblique incoming waves. The gradual breaking and dissipation of wave crestlines and the surface roller structure along the breaking wavefront are automatically captured without any empirical input, such as data for the roller shape or the wave propagation angle at breaking.  相似文献   

6.
Field experiments were conducted on a low-gradient, high-energy sandy beach (Truc Vert, France) and a steep, low-energy gravel beach (Slapton, UK) to examine alongshore-directed currents within the swash zone. At Truc Vert, data were collected over 33 tidal cycles with offshore significant wave heights of 1–4 m and periods of 5–12 s. At Slapton data were collected during 12 tides with wave heights of 0.3–1 m and periods of 4–9 s. The swash motion was predominantly at infragravity frequencies at Truc Vert and incident frequencies at Slapton.  相似文献   

7.
A model explaining the mechanism of alongshore bar formation from the point of view of the sediment balance in the surf zone is considered. A cloud of suspended matter that appears during wave breaking is transported shoreward and simultaneously sediments forming a vertical material flux directed to the bottom (S). Simultaneously, an undertow generates a horizontal offshore flux of suspended matter q x . Under these conditions, the sediment balance is determined by the equality of the flux -S and the gradient dq x /dx. The bottom profile satisfying the balance equation is a bar profile with the crest at the point of the flux maximum -S. The model predicts a concave profile of the seaside slope and a concave-convex profile of the slope in the trough. A conclusion is reached on the basis of the calibration and verification of the model based on the field data that the suggested mechanism manifests itself differently in the outer and inner zones of the coastal zone. In the inner zone, the horizontal size of the bar is determined by the length of short wind waves, while, in the outer one, it is determined by the length of the infragravity waves related to the groups of short waves. It is shown that the model can be applied to estimate the parameters of the largest bar in the inner part of the coastal zone.  相似文献   

8.
Sediments of the continental slope are commonly bioturbated by endo- and epibenthic organisms, particularly in and around submarine canyons and channels. This study reviews the architecture and depositional environments associated with canyons and channels on the continental slope, and assesses the key physical and chemical conditions encountered in and around these conduits. Hydrodynamic energy, concentration and quality of organic carbon, dissolved oxygen concentration and sedimentation rate are identified as key controls on the composition of benthic ecosystems in slope environments. Submarine canyons and channels focus a variety of turbid and clear-water currents, all of which serve to increase the concentration of oxygen, labile organic carbon and other nutrients, which tend to elevate the abundance and biodiversity in the seafloor sediments, compared with those of the surrounding slope. Ancient slope channel and canyon systems reflect some of the variation in ichnological assemblages that is seen in modern analogues, although processes of erosion and trace fossil preservation mean that the benthic environment is often incompletely preserved in the ancient record. By integrating current understanding of sedimentology, oceanography, biology and ichnology of slope environments it is possible to provide a first order summary of the inter-relationships between ichnology and depositional environments on the continental slope. The combination of these data has the potential to improve our understanding of changes in deep marine benthic ecosystems through geological time, and to further the use of ichnology in assessing hydrocarbon reservoir presence, quality and performance from bioturbated slope, canyon and channel-levee hydrocarbon reservoirs.  相似文献   

9.
Three small headlands in the sea cliffs west of Gaviota Beach, California, are the remnant fill of three discrete submarine gullies incised into the late Miocene submarine slope environment. These promontories provide excellent, three-dimensional exposure of the gully fill in outcrop, permitting documentation of their complex internal stratigraphic architecture. Detailed study of these exposures elucidates the sedimentologic processes that occur in the filling of slope gullies, guides interpretation of the acoustic records of otherwise unsampled modern gully systems on continental slopes, and provides insight into the heterogeneity that may characterize slope gully petroleum reservoirs.  相似文献   

10.
Submarine channels are major morphological features of the sea floor and are important in the transport of sediment to the deep ocean. Although much is known concerning the large-scale distribution of sediment within and surrounding submarine channels, there is little understanding of the fluid dynamic processes that control this sedimentation. Direct measurement of flow velocities and concentrations has proved to be extremely difficult within submarine channels, with the resultant paucity of direct observations making physical laboratory modelling a critical technique for examining the processes that operate in, and control, submarine channel development.Recent experimental and numerical studies have proposed a new model of secondary circulation within submarine channel bends, characterised by a reversal in the orientation of the secondary circulation cell relative to that found in meandering rivers. This new paradigm for submarine channels thus predicts basal flow from the inside to the outside of the bend at a bend apex, with an upper return flow directed towards the inner bend. The reversal in orientation of the secondary flow cell has been linked to the vertical distribution of downstream velocity and associated changes in centrifugal and pressure gradient forces. However, previous work has additionally proposed that shearing of the within-channel flow by overbank flow may also generate secondary flow reversal.This study assesses the applicability of the proposed submarine bend flow model against a range of key channel parameters. We demonstrate that the sense of secondary circulation is the same for all experimental conditions, strongly supporting the new model of secondary flow in submarine channels. Furthermore, investigation of overbank shear induced secondary circulation confirms for the first time that this mechanism can occur, and identifies the channel styles most likely to exhibit this effect. Such shear-induced circulation is, however, shown to be a secondary mechanism, with the vertical distribution of downstream velocity the principal mechanism. In certain channel configurations, the two mechanisms may act to augment one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号