首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
讨论了一种基于神经网络控制的飞行控制方法。针对复杂非线性系统难以建立精确模型的特点,利用神经网络的任意非线性逼近能力进行控制器设计,首先应用神经网络在线辨识对象逆模型,进行控制系统反馈线性化;接着利用circle theorem(圆定理)设计线性PID鲁棒控制器,控制系统输出跟随系统输入,然后应用神经网路自适应逆方法设计混合控制器,最后以F-8飞机纵向飞行控制模态为研究对象进行仿真。仿真结果表明,该控制方法具有较强的自适应和抗干扰能力。  相似文献   

2.
研究了一类采样数据非线性系统的动态神经网络稳定自适应控制方法.不同于静态 神经网络自适应控制,动态神经网络自适应控制中神经网络用于逼近整个采样数据非线性系 统,而不是动态系统中的非线性分量.系统的控制律由神经网络系统的动态逆、自适应补偿项 和神经变结构鲁棒控制项组成.神经变结构控制用于保证系统的全局稳定性,并加速动态神 经网络系统的适近速度.证明了动态神经网络自适应控制系统的稳定性,并得到了动态神经 网络系统的学习算法.仿真研究表明,基于动态神经网络的非线性系统稳定自适应控制方法 较基于静态神经网络的自适应方法具有更好的性能.  相似文献   

3.
基于动态递归网的无刷直流电动机自适应逆控制   总被引:3,自引:1,他引:3  
该文给出了基于动态递归神经网络的无刷直流电动机自适应逆控制方案 ,它可以处理电机非线性、变参数的影响。通过使用动态递归网实现了对象逆动态模型的在线控制 ,分析和仿真表明这种方法具有较好的自适应性及良好的收敛性能 ,且具有灵活、简单、方便等特点 ,有实际应用价值  相似文献   

4.
非线性动态系统的内模控制要求建立精确的对象正模型和逆模型,这对于大多数实际对象是难以做到.提出了基于一类神经模糊模型的非线性动态系统建模方法,并在此基础上研究了基于神经模糊模型的非线性系统的内模控制设计.基于输入输出数据辨识的对象正模型和逆模型存在着模型失配问题,导致神经模糊内模控制范围变窄和控制鲁棒性降低,为了改善系统的性能,提出了神经模糊内模控制与PID控制结合的双重控制策略.对CSTR的反应物浓度控制研究表明,双重控制策略能有效地拓宽系统可控范围,改善系统性能.仿真结果证明该控制策略简单而有效.  相似文献   

5.
针对一类结构和参数均具备时变特性的复杂时变系统,提出一种新的基于联合滤波算法的在线自适应逆控制方法.该方法在处理参数时变问题的同时可兼顾系统的结构时变特性,实现复杂动态系统的在线跟踪控制.同时提出新的联合Volterra核函数滤波算法,该算法克服了原Volterra滤波器计算复杂运算速度慢的缺点,实现了动态非线性系统的在线跟踪控制.通过仿真分析可以得出,对于此类线性、非线性复杂时变系统,基于新的联合滤波器的自适应逆控制方法可以快速有效的实现动态对象在线建模与控制.  相似文献   

6.
动态补偿逆的非线性内模控制在机器人中的应用   总被引:2,自引:0,他引:2  
针对机器人的非线性不确定性和传统非线性内模控制在控制上存在的不足.提出一种基于动态补偿逆的非线性不确定系统RBF内模控制,在引入RBF建立逆模型的同时.将无模型自适应控制方法作为附加控制器,用于在模型偏离被控对象时在线修正逆模型。仿真结果表明,本文提出的方法不仅对机器人系统的常量摄动具有较好的鲁棒性,对时变不确定性仍能保持较好的跟踪效果.具有较好的实时性、鲁棒性和在线校正功能。  相似文献   

7.
基于神经网络的鲁棒自适应逆飞行控制   总被引:8,自引:0,他引:8  
提出基于在线神经网络的超机动飞行自适应动态逆鲁棒控制方法.超机动飞行的基本控制律采用非线性动态逆方法设计,对于建模误差或者控制面损伤等因素导致的不确定性逆误差采用神经网络进行自适应补偿.通过动态逆控制律简化计算和飞机控制面故障自适应修复的仿真表明,神经网络通过在线补偿逆误差,能够有效降低非线性动态逆对模型准确性的要求,增强控制系统的鲁棒性.  相似文献   

8.
张超  严洪森 《控制与决策》2019,34(10):2085-2094
针对永磁同步电机(PMSM)的高性能控制问题,在充分考虑时变特性、不确定性以及测量噪声等随机因素的基础上,通过PMSM的逆系统将被控对象补偿成为具有线性传递关系的系统,提出一种基于改进自适应逆控制的控制方案.采用矢量控制的双闭环控制结构,将多维泰勒网逆控制方法引入速度环.首先,对PMSM数学模型的可逆性进行证明以解决非线性系统逆建模的存在性问题;然后,建立新颖的动态网络化控制器-----多维泰勒网(MTN),其具有结构简单、计算复杂度低的优点;最后,为了实现高精度的速度控制,将3个MTN分别作为实现系统建模的自适应模型辨识器、逆建模的自适应逆控制器和噪声干扰消除的非线性自适应滤波器,并将PMSM的动态响应控制和消除干扰的控制分为相对独立的过程进行,同时实现最优控制.仿真结果表明,所提出控制方案能够实现PMSM伺服系统精确的速度控制,具有良好的跟踪性能和较强的抗干扰能力.  相似文献   

9.
基于神经网络的非线性船舶航向自适应逆控制   总被引:1,自引:0,他引:1  
考虑船舶航向控制模型中存在的非线性,本研究在模型参数未知的情况下,基于神经网络非线性滤波器,构建了非线性船舶航向的在线自适应逆控制系统.通过对"The R.O.V Zeefakkel"散装船的仿真研究,证明了该自适应算法的有效性,系统在显著改善动态响应性能的同时,具有良好的鲁棒性和扰动消除能力.  相似文献   

10.
针对一类更广泛的非仿射非线性离散系统,提出一种改进的无模型自适应控制算法。该算法基于非参数动态线性化方法,运用观测器的思想,实现带有扰动系统的实时动态线性化,进而将无模型自适应控制方法的应用推广到更广泛的非仿射非线性离散系统。同时,对推广后的改进无模型自适应控制方法进行理论上的证明,并通过仿真实例验证了所提出的改进无模型自适应控制方法的可行性和有效性。  相似文献   

11.
基于复合正交神经网络的自适应逆控制系统   总被引:10,自引:0,他引:10  
叶军 《计算机仿真》2004,21(2):92-94
目前,在自适应逆控制系统中常采用BP神经网络,而BP网络存在算法复杂、易陷入局部极小解等不足。而正交神经网络能克服BP网络的不足,但由于正交神经网络学习算法存在某些局限性,提出了一种复合正交神经网络,该正交网络结构与三层前向正交网络相同,不同的是正交网络的隐单元处理函数采用带参数的Sigmoid函数的复合正交函数,该神经网络算法简单,学习收敛速度快,并能对网络的函数参数进行优化,为非线性系统的动态建模提供了一种方法。仿真实验表明,网络在用于过程的自适应逆控制中具有很高的控制精度和自适应学习能力。该动态神经网络比其它神经网络具有更强的建模能力与学习适应性,有线性、非线性逼近精度高等优异特性,非常适合于实时控制系统。  相似文献   

12.
一种基于模糊径向基函数神经网络的自学习控制器   总被引:3,自引:0,他引:3  
提出了一种新型的基于模糊径向基函数 (RBF)的神经网络学习控制器 ,并应用于电液伺服系统 .由于RBF网络和模糊推理系统具有函数等价性 ,采用模糊经验值方法选取网络中心值和基函数数目 .与一般的神经网络自学习控制器不同 ,以系统动态误差作为网络输入量 ,RBF神经网络控制器学习的是整个系统的动态逆过程 ,因而控制性能明显提高 .对电液位置伺服系统的仿真和实验结果表明 ,该控制方案可以有效提高系统的控制精度和自适应能力  相似文献   

13.
基于动态函数连接神经网络的自适应逆控制系统辨识研究   总被引:1,自引:0,他引:1  
虎涛涛  康波  单要楠 《计算机科学》2017,44(10):203-208
自适应逆控制将系统扰动消除和动态响应性能独立分开控制,其性能的优劣取决于系统对象、逆对象及逆控制器模型辨识精度的高低。文中提出用动态函数连接神经网络来实现自适应逆控制系统对象、逆对象的同时在线建模和逆控制器的离线建模,并将模型参数的辨识转化为空间参数寻优。针对混沌初始化对已收敛种群结构的破坏性,提出用变参数混沌粒子群优化算法对神经网络权值进行全局寻优,通过仿真实验可以看出基于动态函数连接神经网络的建模误差小,辨识精度高;与当前的参考模型自适应控制方法进行对比分析,所提方法能取得较好的扰动消除效果,并能使系统的跟踪响应性能得到提高,从而验证了方法的有效性、可行性。  相似文献   

14.
Dynamic neural controllers for induction motor   总被引:8,自引:0,他引:8  
The paper reports application of recently developed adaptive control techniques based on neural networks to the induction motor control. This case study represents one of the more difficult control problems due to the complex, nonlinear, and time-varying dynamics of the motor and unavailability of full-state measurements. A partial solution is first presented based on a single input-single output (SISO) algorithm employing static multilayer perceptron (MLP) networks. A novel technique is subsequently described which is based on a recurrent neural network employed as a dynamical model of the plant. Recent stability results for this algorithm are reported. The technique is applied to multiinput-multioutput (MIMO) control of the motor. A simulation study of both methods is presented. It is argued that appropriately structured recurrent neural networks can provide conveniently parameterized dynamic models for many nonlinear systems for use in adaptive control.  相似文献   

15.
构建一个新的分数阶细胞神经网络系统,设计驱动系统非线性参数已知而响应系统非线性参数值未知的驱动–响应系统,运用自适应同步控制器及参数自适应调整律实现该驱动–响应系统同步.数值仿真和动力学分析结果表明新的分数阶细胞神经网络系统具有混沌特性.结合分数阶电路理论设计出新的分数阶细胞神经网络系统同步控制的电路原理图.本方案实际可实现4096种多元组合电路,为简洁起见,选取分数阶qi(i=1,2,3)相同值(即q1=q2=q3=0.95)的组合电路进行电路仿真.仿真结果表明,多元电路仿真和数值仿真实验结果具有很高的吻合度.从而证实了该自适应同步控制方法在物理上的可实现性,在工程领域中具有现实的应用价值.  相似文献   

16.
基于改进型Volterra 基函数网络的直接自适应逆控制方法   总被引:3,自引:0,他引:3  
构造一种改进型Volterra基函数网络,其特点是结构简单,容易离线确定最佳网络结构和初始权值。通过利用该网络在线学习非线性系统的逆,构造了一种非线性系统的直接自适应逆控制策略,并从理论上证明了闭环系统跟踪误差一致最终有界。仿真结果表明该方法的鲁棒性能良好。  相似文献   

17.
基于神经网络与多模型的非线性自适应广义预测控制   总被引:9,自引:0,他引:9  
针对一类不确定非线性离散时间动态系统, 提出了基于神经网络与多模型的非线性广义预测自适应控制方法. 该自适应控制方法由线性鲁棒广义预测自适应控制器, 神经网络非线性广义预测自适应控制器和切换机制三部分构成. 线性鲁棒广义预测自适应控制器保证闭环系统的输入输出信号有界, 神经网络非线性广义预测自适应控制器能够改善系统的性能. 切换策略通过对上述两种控制器的切换, 保证系统稳定的同时, 改善系统性能. 给出了所提自适应方法的稳定性和收敛性分析. 最后通过仿真实例验证了所提方法的有效性.  相似文献   

18.
针对感应电机变频器调速系统的非线性特点,提出一种基于Hammerstein模型的神经网络控制方法。 Hammerstein模型由静态非线性模块和动态线性模块组成。首先,利用ARMA模型实现对感应电机变频器调速系统的线性动态模块辨识;然后,基于该辨识模型,实现调速系统非线性静态模块神经网络逆模型辨识与系统直接逆控制;最后,针对控制过程中存在的电机负载扰动问题,设计了神经网络直接逆控制器在线学习与控制策略。仿真实验表明,所提出的控制策略可以获得满意的控制效果。  相似文献   

19.
根据神经网络对非线性系统模型的辨识能力,将其与自适应逆控制相结合,对水轮发电机组的逆模型进行建模,构建一种新的水轮机调节系统。该方案以逆系统以及系统辨识理论为基础,以水轮发电机组作为被控对象,分别针对其频率和负荷扰动,建立神经网络在线逆控制器,对系统进行调控,并将仿真结果与传统PID控制进行比较。从仿真结果可以看出,所提的控制方案能够实现对水轮发电机组的有效控制,使系统具有较好的动态性能和鲁棒性。  相似文献   

20.
为了保证风洞试验绳牵引并联机器人(WTT–WDPR)末端执行器的位姿,提出了一种基于局部模型逼近的自适应径向基(RBF)神经网络控制.采用牛顿–欧拉法建立了飞机模型的动力学方程,并基于动态力矩平衡方程建立了驱动系统的动力学方程.采用RBF神经网络进行了局部模型的逼近设计和控制律设计,并通过构建Lyapunov函数对系统...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号