首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
用热重分析方法研究了玉米全秸秆、秸皮和玉米叶的热解失重过程和热解特性.结果表明:3种原料的热解过程相似,分为预热解、主热解和碳化3个阶段,且均在340C左右达到最大失重速率;玉米全秸秆的热解特征指数最大,挥发分析出特性最好,其次是秸皮和玉米叶;采用不同反应级数n进行动力学拟合发现:n=2时的热解动力学拟合效果较n=1好,同时玉米全秸秆的动力学参数均最大,玉米叶最小,即全秸秆需要最多的热量才可以热解,但开始热解后其热解过程也相对更容易进行.  相似文献   

2.
玉米秸秆热解反应动力学的研究   总被引:6,自引:0,他引:6  
利用热重分析法(TG)对粒径为0.28~0.60mm的玉米秸秆在5、10、20、30℃/min 4种不同升温速率下的热解反应动力学进行了研究。结果表明,秸秆的热解过程分为4个阶段,主要反应阶段在287~400℃之间,随着升温速率的增加,主要反应区间略有增加。Ozawa法计算出的玉米秸秆活化能(E)值在153~160 kJ/mol范围内,KAS法得出的玉米秸秆活化能集中在147~157 kJ/mol之间。用微分法Achar方程、积分法Coats-Redfern方程,将41种常用的固体反应动力学机理函数一一代入,再根据热分析动力学三因子求算的比较法得出玉米秸秆热解过程符合Mampel Power法则,并给出机理函数的微分形式和积分形式,反应级数为2,本研究为生物质热解装置的设计及参数优化提供了科学依据。  相似文献   

3.
玉米秸秆恒温热解实验研究及动力学分析   总被引:4,自引:0,他引:4  
用热重分析法对玉米秸秆在恒温条件下的热解规律进行研宛。分析玉米秸杆样品在恒温热解过程中,不同的恒温条件对其热解曲线形态的影响。研究结果表明在不同的恒温温度条件下其热解曲线形态基拳相似,但在300℃条件下恒温热解的热解曲线与250℃、350℃条件下恒温热解的热解曲线相比较较为平缓。同时对玉米秸秆样品的热解的动力学模型进行研究,得到符合玉米秸秆样品在恒温条件下的热解失重动力学方程和热解动力学参数,为玉米秸秆的合理利用提供一定的理论依据。  相似文献   

4.
不同催化剂下玉米秸秆热解产物特性研究   总被引:1,自引:0,他引:1  
在管式加热炉中对玉米秸秆进行了热解实验研究,分别在纯秸秆热解和添加催化剂(CaO、循环流化床锅炉炉渣、炉灰)的条件下进行了对比实验研究.实验结果表明,添加催化剂后热解气中COz体积含量都有显著下降,同时,添加催化剂后热解气中可燃气成分在增加;通过实验还发现,添加炉灰能够得到最高气体产率、最低液体产率.添加炉渣能够得到最高的气体热值,与纯秸秆热解相比,气体热值提高了75.4%.  相似文献   

5.
生物质在实验室环境与实际生产环境下的热解特性存在较大差别。以30mm长玉米秸秆为对象,在管式炉中模拟移动床热解炉中实际传热环境,研究热解温度、热解时间对热解进程的影响规律,同时研究了生物质在实验室环境下的热解特性。研究结果表明,实验室环境下生物质热解温度超过580℃后,提高热解温度对生物质挥发分残留率的影响可以忽略,但在实际生产环境下,由于传热传质条件的变化,在合理的经济时间内,生物质热解温度超过580℃后生物质的挥发分仍有较高的析出速率,移动床热解炉的工艺参数确定应该以实际生产环境下的热解特性为理论基础。  相似文献   

6.
采用热重分析仪(TGA)对生物质与城市污水污泥单独及共热解基本热解特性进行了考察,并结合测定的生物质中纤维素、半纤维素和木质素含量对共热解过程热解特性的影响规律发现:升温速率为20℃/min时,污泥单独热解分为水分析出、挥发分析出和焦炭化3个阶段;由生物质单独热解特性分析可知,松木屑热解特性最优,花生壳次之,狐尾藻最差;通过不同生物质添加量时的共热解过程考察,得知较高的生物质添加量更有利于共热解过程的进行;结合共热解特性变化与生物质组成的关系可知,含纤维素和木质素较多的松木屑与污泥共热解时有明显的协同作用发生,含木质素较多的花生壳也有较为明显的协同作用,含半纤维素较多的狐尾藻协同效果不明显。  相似文献   

7.
为解决陆地生物质资源短缺,开发水生生物质有效替代部分陆地生物质迫在眉睫。通过热重法研究玉米秸秆和海藻共同热解的特性,重点考察掺混比例和升温速率的影响,并对混合样品的热力学特性和动力学特性进行分析。结果显示,热解分为干燥、挥发分析出及焦炭热解三个阶段。掺配后的混合样品最终失重率与最大失重速率均小于纯秸秆与纯海藻。随着海藻掺配比例的增加,可燃性指数Ca先增大后减小,燃尽特性指数K递减,热解特性指数S先增大后减小。不同升温速率工况下,在热解区间(200~600℃),随着升温速率的升高,样品的热重曲线右移,失重率越来越大,最大失重速率先减小后增大,30℃/min时最小。Ca在递减,K、S呈增加趋势。动力学研究结果表明,不同掺配比例工况下,混合样品存在明显的协同作用,降低了共热解所需活化能。在不同升温速率工况下,升温速率越大,所需要的活化能越小,样品越容易发生热解。  相似文献   

8.
在管式加热炉中对玉米秸秆进行了热解实验研究,实验结果表明添加CaO后,气体中CO、H2、CH4含量均有增加,尤其是H含量增加最为明显,产气热值相对于纯玉米秸秆热解提高了17·9%。  相似文献   

9.
张天乐  邱凌  王雅君 《可再生能源》2019,(10):1423-1428
文章利用实验室热解管式炉开展了玉米秸秆慢速热解正交试验。以热解温度、滞留时间和原料粒径为试验因素,以高位热值和能量得率为评价指标,依据极差法和方差法分析3个试验因素的主次顺序,并确定相应的最佳工艺组合。研究结果表明:对于高位热值和能量得率,热解温度为显著性因素,滞留时间和原料粒径均为非显著性因素,且3个试验因素对高位热值和能量得率的影响程度均为热解温度滞留时间原料粒径;分别以高位热值和能量得率作为评价指标时,最佳工艺条件分别为热解温度为700℃,滞留时间为30 min,原料粒径为0.6~0.8 mm和热解温度为200℃,滞留时间为30 min,原料粒径为0.4~0.6 mm。  相似文献   

10.
利用层流炉研究玉米秸秆粉末的快速热解特性   总被引:11,自引:2,他引:11  
为了研究闪速加热条件下生物质的热解挥发特性,设计了等离子体加热高温层流炉作为实验设备。由于该设备内部的流动特性对于实验结果影响巨大,为此特别设计了一套1:1比例的透明有机玻璃冷态模拟装置,用于观察层流炉的流动状态,为热态实验参数设计提供实践指导。根据冷态研究观察结果,进行了层流炉热态实验。采用灰分示踪法测定了玉米秸秆粉末在800,850,900,950K的热解失重曲线。通过数据处理得到了玉米秸秆粉末在快速加热条件下的热解动力学方程和参数。  相似文献   

11.
鸡粪中添加一定量的秸秆可以有效解决单一物料发酵出现的C/N失衡问题。为了维持系统稳定,文章以鸡粪为底物添加10%的玉米秸秆开展中温连续式干发酵实验,研究发酵消化系统的理化参数、产气特性、酶活性以及微生物群落的变化情况。研究结果表明:甲烷最高日产量为43.39 L;在整个厌氧消化过程中,氨氮浓度未对微生物的生长产生抑制作用;消化液的pH值呈现出先稳定后减小,最后上升至7±0.2并保持稳定的变化趋势,VFAs浓度的变化趋势为先上升后趋于稳定;COD浓度最大值为110 400 mg/L,纤维素酶、半纤维素酶、蛋白酶、脂肪酶和淀粉酶活性的最大值分别为2.44×105,0.34,153.06,471.93,307.76 IU/L;在水解酸化阶段,门水平上的优势菌为广古菌门、厚壁菌门、变形菌门和拟杆菌门,产甲烷阶段的优势菌属主要为甲烷丝状菌属、甲烷拟杆菌属和甲烷球形菌属。  相似文献   

12.
为了研究玉米秸秆颗粒燃料的燃烧特性,以一个小型反烧单元体炉为试验装置,分别进行了不同料层、不同水分、不同空气量下的燃烧试验,了解其燃烧特性,如点火时间、燃烧时间、燃烧过程及燃烧后的结渣现象。试验结果表明,玉米秸秆颗粒燃料易点燃,燃烧温度高,但燃烧时间短,结渣严重;料层高的玉米秸秆颗粒燃料燃烧时间相对长,但燃烧温度低,轻微结渣;干燥处理过的玉米秸秆颗粒燃料点火时冒黑烟现象明显减轻;加大燃烧过程的空气量时,玉米秸秆颗粒燃料不结渣。  相似文献   

13.
玉米秸秆预处理对厌氧发酵制氢影响的研究   总被引:3,自引:0,他引:3  
为提高玉米秸秆的产氢能力,实验研究了蒸汽爆破预处理、硫酸预处理、氢氧化钠预处理、盐酸预处理和酸化(碱化)气爆预处理5种预处理方法对玉米秸秆发酵产氢能力的影响。结果表明,预处理可以将秸秆中相当一部分纤维素和半纤维素水解生成还原糖,其中质量分数为0.8%的H2SO4酸化汽爆预处理对秸秆的水解效果最好。在固-液比1∶10、H2SO4质量分数0.8%、保持微沸状态30min的处理条件下,秸秆的糖含量达到最大值24.57%,最大氢气产量为141mL/g。  相似文献   

14.
张小桃  李娜  骞浩 《节能》2013,32(1):15-18,2
基于ASPEN PLUS软件,对玉米秸秆与煤的掺烧过程进行建模与模拟,研究在不同的生物质掺混比例及含水率下,锅炉运行性能以及污染物排放的变化规律。结果表明:与单独燃烧煤粉相比,随着掺烧比例的增大,生成的理论烟气量和烟气热损失增大,锅炉效率有所降低,气体污染物NO及SO2减少;随着生物质含水率的增大,NO的排放量减少,而SO2的排放量增加。  相似文献   

15.
稀酸预处理玉米秸秆条件优化的试验研究   总被引:3,自引:0,他引:3  
采用稀硫酸对玉米秸秆进行预处理,采用DNS法测定玉米秸秆水解液中还原糖的含量,对水解温度、水解时间、稀硫酸质量分数、固液质量比4个因素进行单因素试验分析,再通过正交试验对预处理条件进行优化.试验结果表明,最佳预处理条件:水解温度为121℃,水解时间为1 h,稀硫酸质量分数为0.6%,固液质量比为10%.  相似文献   

16.
对稀硫酸预处理玉米秸秆优化工艺条件进行了试验研究,在考察温度、时间、稀硫酸质量分数、固液质量比和玉米秸秆粒度5个单因素对预处理效果影响的基础上,采用响应面分析法对预处理条件进行优化,建立了以戊糖得率为响应值的二次回归方程模型,得到最佳预处理条件为水解温度120℃,水解时间75 min,稀硫酸质量分数1.0%,固液质量比1∶15,玉米秸秆颗粒为40目。此条件下,理论预测戊糖得率为65.018%,试验验证戊糖得率为64.37%,与预测值接近,说明预测模型可靠性较高,可应用于稀酸预处理条件的优化。  相似文献   

17.
城市污泥与玉米秸秆共热解及炭粉吸附特性研究   总被引:3,自引:0,他引:3  
利用外热式固定床反应器,在400~700℃下对不同比例的城市污泥与玉米秸秆混合物进行共热解,研究热解条件对炭粉的产率、比表面积、孔径分布的影响。结果表明,随热解温度的提高和玉米秸秆量的增加,炭粉的产率逐渐减小,700℃时,纯污泥热解的炭粉得率是51.5%(以干原料计),添加45%的秸秆时,炭粉得率是41.75%;炭粉的比表面积随热解温度的提高而增大,随玉米秸秆量的增加而增大,700℃时,比表面积在50~80m2/g;纯污泥热解炭粉的孔径以中大孔为主,随玉米秸秆添加量的增大,炭粉的孔径分布由中大孔趋向中微孔。  相似文献   

18.
This paper studies the influence of temperature and corn straw content on release and transformation of potassium during coal and corn straw co-combustion. The results indicate when the corn straw content was lower, released K decreased due to the reactions of KCl with Fe and Ti forming K2O·Fe2O3 and K2TiO3. When the corn straw content was 80 wt%, from 600°C to 1100°C, the release of KCl(g) improved. K existed in ashes as K2SO4 or alumina-silicates. With temperature increasing, the K2SO4 decreased, and the KAlSiO4, KAlSi3O8, and KAlSiO6 increased especially between 900 and 1100°C.  相似文献   

19.
Steam co‐gasification of iron catalyst‐loaded biochar, which was produced by the pyrolysis of woody biomass and Indonesian Adaro subbituminous coal at 800 °C, was carried out in this study. The main purpose of this work was to examine the effectiveness of an iron catalyst loaded on biochar for hydrogen (H2) evolution. It was shown that the H2 evolution for a mixed sample of iron‐loaded biochar (20 wt%) and Indonesian Adaro subbituminous coal increased by 20% compared with that for the coal sample with the same amount of iron catalyst and was approximately 1.5 that for the coal sample without the iron catalyst. This increase in the co‐gasification H2 evolution was explained by the chemical form and crystallite size of the iron catalyst. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号