首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
改性生物炭作为磷吸附剂的应用与经济效益分析   总被引:1,自引:0,他引:1  
综述了原材料、炭化温度、改性剂、pH、共存离子以及生物炭再生等因素影响改性生物炭对磷(P)吸附性能的原因,并对不同改性生物炭的吸附性能及其吸附回收磷的经济效益进行了分析,以期为新型高效磷吸附材料研发提供指导与借鉴。  相似文献   

2.
《广州化工》2021,49(17)
以开心果果壳为原料,制备锆改性生物炭,并研究了其除磷性能。结果表明,Zr/生物炭摩尔质量比为2.0 mmol/g时,制备的生物炭(Zr_(2nd2.0)-PNSBC)除磷效果较好。一定程度增加初始磷浓度有助于提高磷吸附量和低pH环境下有利于磷的吸附,共存离子HCO~-_3抑制磷的吸附。固定床吸附中,吸附剂对真实含磷污水有一定的处理能力,以1.0 mol/L NaOH为再生试剂,经5次循环吸附和再生后,Zr_(2nd2.0)-PNSBC对磷的吸附量下降了13.3%。表征结果表明,Zr改性后生物炭对磷的吸附主要通过静电吸引和配体交换磷的吸附机理主要为配体交换。  相似文献   

3.
镧改性核桃壳生物炭制备及吸附水体磷酸盐性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为研发低成本的磷酸盐吸附剂,以核桃壳为原料,LaCl3为改性试剂热解制备核桃壳生物炭。通过SEM-EDS、ICP-OES、FTIR和XRD对生物炭进行表征,采用吸附等温模型和动力学模型拟合生物炭的吸磷特征,并研究热解温度、La改性浓度、添加量、初始溶液pH和共存离子对生物炭吸附磷的影响。结果表明:La改性后,生物炭表面由于负载了La2O3和LaOCl,其吸附能力明显提高。热解温度为400℃、La浸渍浓度为0.1mol/L时获得的生物炭(BC-La400),其Langmuir最大磷吸附容量为12.18mg/g,吸附过程主要受化学吸附和颗粒内扩散控制。热解温度和La改性浓度过高均不利于磷的吸附。磷初始浓度为50mg/L时,BC-La400添加量为2.7g/L可获得较理想的吸附能力,但当添加量超过4.0g/L时,磷脱除率可超过98%。BC-La400吸磷时最佳初始pH为3,CO32-共存会明显削弱BC-La400对磷的吸附能力。  相似文献   

4.
生物炭的主要改性方法及其在污染物去除方面的应用   总被引:1,自引:0,他引:1  
综述了紫外辐射改性、酸碱改性、负载金属及其氧化物改性、有机物改性等生物炭的改性方法,并针对改性效果和改性机理进行了总结分析。生物炭经过改性,具有比原始生物炭更多的表面官能团,或者更高的比表面积,或者负载于生物炭表面得改性物质能够与目标物反应,进而提高生物炭的吸附性能。最后总结了改性生物炭在土壤改良、水中污染物去除和空气中污染物去除三个方面的应用。  相似文献   

5.
松木层孔菌生物炭的制备及其对甲基橙的吸附性能   总被引:1,自引:0,他引:1  
以松木层孔菌菌渣为原料制备生物炭,并将其应用于甲基橙水溶液的吸附.研究了生物炭用量、吸附温度、吸附时间和超声功率对松木层孔菌生物炭吸附性能的影响,并通过热重分析、比表面积及孔径分析和傅里叶红外光谱分析揭示了松木层孔菌生物炭吸附性能与其结构的关系.结果表明:在超声辅助作用下,生物炭用量对松木层孔菌生物炭吸附甲基橙效果的影响最大;氯化锌改性松木层孔菌生物炭吸附能力比未改性的要好,其主要原因是改性松木层孔菌生物炭因其多孔结构具有更大的比表面积,而且表面官能团种类和数量更加丰富.  相似文献   

6.
以废棉纺织物为研究对象,对其进行改性处理,分析原样和改性样的元素组成和表面形态,确定出废棉纺织物制备生物炭材料的方法,研究生物炭材料对亚甲基蓝印染废水的吸附特性。实验表明,棉纺织废物经改性后,表面形态呈现粗糙且疏松的结构;改性样生物炭的pH值为9.51时,生物炭中碳质量分数为67.5%,生物炭得率为43.2%,生物炭碘吸附值为2 493 mg/g,生物炭材料表面官能团非常丰富,具有吸附能力;当亚甲基蓝印染废水初始质量浓度为300、400 mg/L时,平衡吸附量为112.1、119.4 mg/g,吸附过程是快速吸附,吸附量大,有较好的吸附作用。废棉纺织物改性后可以促进生物炭孔结构的形成,具有吸附能力,为废纺织物的资源化利用、吸附剂的制备和印染废水的处理提供了一种新方法。  相似文献   

7.
《应用化工》2022,(12):3350-3354
水体重金属污染对自然环境和人体健康造成了极大的危害,开发新型污染治理材料具有重大意义。本研究以玉米秸秆、牛粪粉末、小麦秆和麦穗为原料,以羟基磷灰石(HAP)和磷酸二氢钾(KH_2PO_4)为改性剂,采用浸渍-热解法制备生物炭,并探讨了生物炭对水中Pb(Ⅱ)的吸附效果。结果表明,磷基改性生物炭相比未改性生物炭对铅的吸附容量显著提高,KH_2PO_4改性玉米秸秆-牛粪生物炭对铅的吸附量较未改性增加了394.6 mg/g,提高了478.0%;HAP改性麦穗生物炭对铅的吸附量较未改性增加了507.9 mg/g,提高了997.7%;玉米生物炭原料中添加牛粪可显著提高改性生物炭对铅的吸附能力,相对于未添加,HAP和KH_2PO_4改性玉米秸秆-牛粪生物炭的铅吸附量分别增加了210.6,177.1 mg/g,提高了140.0%和59.1%。本研究制备的KH_2PO_4改性玉米秸秆-牛粪生物炭和HAP改性小麦生物炭对铅均表现出较强的吸附效果。  相似文献   

8.
改性玉米芯生物炭对废水中铜和氨氮的吸附   总被引:1,自引:0,他引:1  
用KMnO_4改性玉米芯生物炭,并用改性生物炭吸附水中的Cu~(2+)和氨氮。结果表明:改性后,生物炭中的—OH基团数量增多且其表面有新生态MnO_2生成,吸附能力增强;生物炭吸附Cu~(2+)、氨氮的最佳pH为7;共存Na~+不影响生物炭对Cu~(2+)的吸附,但显著影响对氨氮的吸附。生物炭对Cu~(2+)、氨氮的吸附分别遵循准二级、一级动力学模型。Freundlich模型能更好地模拟生物炭对Cu~(2+)的吸附行为,Langmuir模型能更好地模拟生物炭对氨氮的吸附行为。  相似文献   

9.
生物炭在提高土壤对磷吸附效率和吸附量方面具有重要作用。本论文以花生、香菇和秸秆为生物炭原材料,通过实验研究了不同原料的生物炭对土壤吸附磷的效果的影响,进行了吸附热力学的分析,研究结果表明:在添加不同投加量香菇生物炭的土壤中,生物炭投加量越大,对磷的吸附效果越高。可以用Freundich方程描述添加香菇生物炭的土壤对吸附磷的热力学过程。在添加三种不同原料的生物炭到土壤对磷的吸附实验中,三者都明显比空白土壤吸附效果强,添加水稻秸秆生物炭的土壤吸附自发性最好。  相似文献   

10.
以马铃薯秸秆为原料制备生物炭,对其进行超声改性得到改性生物炭。探究了改性生物炭对亚甲基蓝的吸附特性以及pH、投加量和离子含量对吸附效果的影响。结果表明,改性后的生物炭与原生物炭相比,吸附能力有所增强。准2级动力学模型(R~20.99)能更好的拟合动力学数据,颗粒内扩散方程拟合结果进一步表明,改性生物炭对亚甲基蓝的吸附受表面吸附和颗粒内扩散共同控制。Langmiur方程能较好的描述该吸附过程。热力学研究表明,改性生物炭吸附亚甲基蓝是自发、熵增的吸热过程。碱性环境有利于吸附反应的进行,在pH=2~11时,碱性越强,吸附效果越好。生物炭投加量为10 g/L时,对亚甲基蓝的去除率较为理想,离子含量的变化对吸附量无明显影响。  相似文献   

11.
近年来,水环境中重金属污染问题日益严重,生物炭材料被广泛应用于环境污染修复。但是原始生物炭材料对污染物的吸附性能欠佳,衍生出众多对其吸附性能提升的研究。到目前为止,有关生物炭材料制备和改性的进展总结欠全面,关于生物炭材料吸附水中重金属离子反应机理的整理也不够深入。基于生物炭材料在水环境中重金属离子吸附领域的研究现状,对生物炭材料的制备方式、改性方法和主要影响因素进行了综述,并梳理了生物炭对水中重金属离子的吸附机制研究进展。最后提出了生物炭材料在应用中可能存在的问题和发展方向。以期为生物炭材料在受重金属离子污染水体的修复应用提供理论和技术支撑,为实际的环境污染修复提供新的思路。  相似文献   

12.
改性生物炭对土壤重金属污染修复研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤中金属污染导致食用林产品、农产品中重金属高富集,严重威胁人类健康。生物炭作为简单易得,来源广泛的吸附材料,可用于土壤重金属污染物修复。本文主要综述了生物炭的制备、改性剂的选择与功能、改性方法及改性生物炭的特性。介绍了改性生物炭的表征手段如傅里叶变换红外光谱、扫描电子显微镜、X射线光电子能谱和比表面积和孔径分析仪在生物炭改性过程中的作用及分析方法。客观分析了改性生物炭的制备方式及对土壤重金属污染修复的机制及效果,并讨论生物炭及改性生物炭对重金属常见的吸附机理以及表面吸附、静电作用、离子交换和共沉淀的特征和条件。大量的研究结果表明,生物炭对降低土壤中重金属的有效态含量具有显著效果,且经过酸碱、氧化还原、吸附剂复合等方式改性后吸附性能更加高效和稳定。生物炭改性是为了提高生物炭的安全性、高效性、重复使用性和环境友好性,同时加强生物炭的重金属修复性能。因此,功能型生物炭的研制及拓展改性生物炭的应用是生物炭改性的进一步深入研究方向。  相似文献   

13.
简述了生物炭的制备条件,讨论了生物炭的主要改性方法(化学法、添加改性剂法及改变外界条件),分析了各改性方法的主要优点,总结了改性生物炭对废水中重金属的吸附效果。实验结果表明,改性生物炭对废水中重金属吸附效果较好,重金属的最大去除率可达99.81%。另外,探讨了改性生物炭的吸附机理、影响因素和吸附等温式,并提出了未来生物炭吸附废水中重金属需要研究的方向以及改性生物炭的应用前景。  相似文献   

14.
生物炭具有多孔隙,占比表面积大,吸附性强,是优质的吸附材料。应用在实际环境中,通过生物炭强吸附可以削减表面的污染,是具有良好经济价值的、环保的、容易得到的新型吸附材料。对制备生物炭复合材料的复合方式、改良方法、改性吸附能力进行分析,提高生物炭复合材料的吸附效能。大量数据表明,生物炭复合材料可以有效地提升吸附作用。用污泥生物炭来净化污水,可达到以废治废、以污治污的作用,可进一步加强生物炭复合材料的综合技术开发与应用。  相似文献   

15.
氧化松木生物炭高效去除水中Pb及定量吸附机理   总被引:1,自引:0,他引:1  
用H_2O_2、KMnO_4(Mn)和Mn(CH_3COO)_2·4H_2O(MnC)改性松木生物炭(PW),通过吸附实验和表征探究其对Pb的去除能力和去除机理,并定量分析各种吸附机制的贡献率。PW-H_2O_2、PW-Mn、PW-MnC对溶液中Pb的吸附量分别是原始生物炭的6、8.5、7.9倍。两种锰改性生物炭比表面积显著提高,其表面形成了MnO_2。阳离子交换对吸附的贡献率占PW-Mn、PW-MnC吸附Pb的74.6%、87.5%。表明BC-MnC是一种去除工业废水中重金属Pb的综合性能优异的材料。  相似文献   

16.
生物炭是通过生物材料热解制备的富含炭的固体产品。实验以玉米秸秆生物炭为原料,在使用碱溶液进行预处理后,用KMnO4、H2O2和HNO3分别改性,得到三种不同的改性生物炭。通过SEM、FTIR和XPS等材料学方法表征后发现改性后的生物炭表面出现明显的孔穴结构且比表面积明显增加。此外,改性后的生物炭具有更丰富的表面官能团和更多的不饱和键,氨氮以NH4+形式与表面官能团结合。吸附性能实验显示,改性后的生物炭可在短时间内达到吸附平衡,最大平衡吸附量可达23.80 mg/g,吸附能力明显提升。将改性生物炭应用于粪污分离液的结果表明,改性玉米秸秆生物炭可以有效去除其中的氨氮,最大去除率可达50.6%。本研究为开展农业废弃物的回收与资源化利用提供了理论支撑。  相似文献   

17.
环境条件对生物炭吸附磷的影响研究进展   总被引:2,自引:0,他引:2  
磷是河湖等淡水体系中富营养化的限制性营养元素,污水除磷对水体净化有重要意义。近年来,生物炭作为一种经济环保的新型吸附材料开始用于回收废水中的磷素,而且研究结果表明生物炭在回收磷的领域具有巨大的应用潜力。生物炭对磷的吸附一方面与其独特的物化性质有关,另一方面生物炭对磷的吸附效果受环境条件的影响。目前,关于环境条件对生物炭吸附磷的影响已有了一些研究,基于这些研究成果,综述了p H、温度、共存离子、磷的初始浓度和反应时间等环境条件对生物炭吸附磷的影响,在此基础上提出目前研究的不足和未来研究方向。  相似文献   

18.
《广州化工》2021,49(18)
研究以颗粒生物炭(GBC)为原料,制备La@Zr改性颗粒生物炭(La@Zr-GBC),并研究了其动态除磷性能。结果表明,Thomas模型能较好拟合吸附数据,一定程度增加初始磷浓度有助于提高磷吸附量,低流量和酸性环境有利于的磷的吸附,共存离子Cl~-和SO_4~(3-)对磷吸附影响较小,但HCO_3~-抑制磷的吸附。采用1.0 mol/L NaOH为洗脱剂,经5次循环吸附和洗脱后,La@Zr-GBC对磷的吸附量下降了15.2%。  相似文献   

19.
分别通过磷酸、氢氧化钾、铁及微波对小麦秸秆生物炭进行改性,探究改性生物炭投加量、溶液初始pH及重金属离子浓度对重金属Pb2+及Cd2+的吸附影响及改性生物炭对重金属的吸附机理。结果表明,磷酸及氢氧化钾改性使生物炭表面坍塌且孔隙结构连通,铁改性使比表面积降低,微波改性使生物炭产生少量孔隙。磷酸改性促进—OH及■的生成,氢氧化钾及铁改性促进—OH的生成,微波改性对生物炭基团的影响较小。改性方法的优异性依次为磷酸改性、铁改性、氢氧化钾改性及微波改性,改性生物炭添加量的增加能够增强对于重金属的吸附,溶液pH为弱碱性时对于Pb2+的吸附效果最佳,Cd2+的吸附效果随着溶液pH增加而增大,Langmuir等温吸附方程能较好反映改性生物炭对于Pb2+及Cd2+的吸附。  相似文献   

20.
徐清艳 《山东化工》2023,(2):4-7+10
以小麦秸秆为原料,通过浸渍法制备改性生物炭,对其采用XRD、SEM进行表征分析,研究钴改性生物炭对尼泊金乙酯(EP)的吸附性能。讨论了改性生物炭的用量、尼泊金乙酯的初始浓度,反应时间及反应温度对EP溶液的吸附影响。实验结果表明:改性生物炭对EP的吸附主要以化学吸附为主;在一定范围内,改性生物炭对EP的吸附效率随生物炭用量的增加而增加;反应温度对改性生物炭吸附EP的影响较大,在EP浓度为30 mg/L、生物炭添加量为5 g/L、温度为45℃条件下吸附4 h时EP最大去除率为95.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号