首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Highly transparent yttrium titanate (Y2Ti2O7) ceramics were fabricated by vacuum sintering using co-precipitated powders for the first time. The effects of the powder calcination temperature on the phase composition, morphology of the calcined powders, and on the microstructure and transmittance of the Y2Ti2O7 ceramics were investigated. When the calcination temperature was above 850 °C, pure phase Y2Ti2O7 nanopowders with high sintering activity were obtained. Transparent Y2Ti2O7 ceramics were obtained after vacuum sintered at 1600 °C for 6 h and annealed at 1100 °C for 5 h in air. The highest transmittance reached 73% at 1000 nm when the calcination temperature was 1150 °C. The measured refractive index of Y2Ti2O7 ceramics was higher than 2.24 at the wavelength range of 350–1000 nm, making it a promising candidate for optical devices.  相似文献   

2.
A novel, efficient, versatile strategy was carried out to fabricate highly porous ceramic parts based on the combination of strong colloidal gel ink fabricated with high boiling point organic solvents and DIW technique. The preparation and optimization of inks and the effect of heating temperature on the phase composition, microstructure, mechanical properties and dielectric properties of ceramic parts were systematically investigated. The strong colloidal ink exhibits excellent ambient stability and printability. The sintering temperatures bring about the evolution of phases, structural mechanical properties and dielectric properties of ceramic parts. Ultimately, Si2N2O single wall ceramic parts with a frame density of 1.07?1.14 g/cm3 and an apparent porosity of 53.13 ± 1.29% were successful fabricated. The dielectric constant and dielectric loss of Si2N2O sample (1650℃) are only 4.24 and 0.0049, respectively. This strategy provides a reference for in-situ synthesis of high-performance porous ceramic components based on the DIW.  相似文献   

3.
The reactive wetting behavior of zirconia with SnAgCu-x%Ti (SAC-x%Ti, wt%, x?=?1, 4) alloy was investigated via the sessile drop method in isothermal experiments. As temperatures elevated, the final contact angle decreased and the minimum contact angle of 21° and 7° were obtained at 1000?°C for SAC-1%Ti and SAC-4%Ti droplets, respectively. Kinetic calculations indicated that the spreading of SAC-Ti droplets on zirconia was controlled by interfacial reaction and the wetting activation energy was 108.8?kJ/mol. The reaction products distribution and morphology in droplets were influenced vastly by the addition of Ti. Along with the increase of Ti content from 1% to 4%, a great deal of Ti-Sn intermetallic compounds (IMCs) were generated in droplets, thereby the outline of droplets were transformed from hemispherical into similar trapezoidal due to the limited spreading and fluidity of droplets. Owing to the interfacial reaction between active elements Ti and zirconia and the subsequent formation of the Ti-O layer, the wettability of SAC-Ti/zirconia was greatly promoted. According to transmission electron microscopy (TEM) analysis, the thin Ti-O reaction layer consisted of the Ti2O, Ti4O7, Ti7O13 and TiO2 phase.  相似文献   

4.
The distribution of Tm3+ and Ni2+ ions is unambiguously exhibited in 80GeS2-20Ga2S3 chalcogenide glass ceramics (GCs) containing Ga2S3 nanocrystals (NCs) by using advanced analytical transmission electron microscopy. Distinctively different distribution patterns of Tm3+ and Ni2+ ions are observed in the GCs obtained by controlled crystallization. The distribution of the dopants imposes strong influence on their optical properties which are revealed by absorption and photoluminescence (PL) spectra. Detailed discussions are given of the mechanisms of the crystallization-induced PL enhancement and quenching of the Tm3+ mid-infrared and Ni2+ near-infrared emissions, respectively.  相似文献   

5.
Sintered reaction‐bonded Si3N4 ceramics with equiaxed microstructure were prepared with TiO2–Y2O3–Al2O3 additions by rapid nitridation at 1400°C for 2 hours and subsequent post‐sintering at 1850°C for 2 hours under N2 pressure of 3 MPa. It was found that α–Si3N4, β–Si3N4, Si2N2O, and TiN phases were formed by rapid nitridation of Si powders with single TiO2 additives. However, the combination of TiO2 and Y2O3–Al2O3 additives led to the formation of 100% β–Si3N4 phase from the nitridation of Si powders at such low temperature (1400°C), and the removal of Si2N2O phase. As a result, dense β–Si3N4 ceramics with equiaxed microstructure were obtained after post‐sintering at high temperature.  相似文献   

6.
Bi4Ti3O12 (BIT), a typical Aurivillius ceramics with high Curie temperature (Tc ? 675 °C), has great potential for high temperature applications. This work provides an effective method of inducing structure distortion, relieving the tetragonal strain of the TiO6 octahedron and decreasing the concentration of oxygen vacancies to improve the piezoelectricity and temperature stability of BIT ceramics. Bi4Ti2.98W0.01Nb0.01O12 possesses an optimum piezoelectric coefficient (d33) of 32 pC/N, a high Tc of 655 °C and a large resistivity of 3 × 106 Ω·cm at 500 °C. The maximum d33 reported here is approximately quadruple than that of pure BIT (?7 pC/N). Moreover, the d33 of W/Nb co-doped BIT and the in-situ temperature stability of the compression-mode sensor present a highly stable characteristic in the range of 25–600 °C. These results imply that W/Nb-modified BIT ceramics is a promising candidate for application at high temperatures of up to 600 °C.  相似文献   

7.
The impact of A-site nonstoichiometry on the microstructure, electric properties, and phase stability of sodium niobate ceramics (Na1+xNbO3, x = ?2 to 1 mol %) was investigated. All the components maintained an orthorhombic antiferroelectric (AFE) structure. The grain size increased from 3.9 to 14.3 μm with the variation in x from ?2 to 1. The AFE–FE phase transition electric field dramatically increased from 100 kV cm?1 at x = 0 to 170 kV cm?1 at x = ?2, confirming the enlarged energy barrier between AFE Pbma and FE Pmc21 phase under external field in A-site deficient components. This is attributed to the lattice compressive stress generated by introducing proper A-site vacancies. Combined results of transmission electron microscopy and Raman spectroscopy indicated that the AFE distortion of Pbma phase was significantly enhanced in A-site deficient components, which jointly contributed to the stability of AFE phase in A-site deficient NaNbO3 material.  相似文献   

8.
NiCuZn ferrite with superior magnetic performance is vital ceramic material in multilayer chip inductors (MLCI) applications. In this study, low-temperature-sintered Ni0.22Cu0.2Zn0.58Fe2O4 ferrite ceramic doped with 1.0?wt% Bi2O3-x?wt% Nb2O5 (where x?=?0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) was synthesized via solid-state reaction method. Effects of Bi2O3-Nb2O5 additives on microstructures and magnetic properties of NiCuZn ferrite ceramics sintered at 900?°C were systematically investigated. Results indicate that an appropriate amount of Bi2O3-Nb2O5 composite additives can significantly promote grain growth and densification of NiCuZn ferrite ceramics when sintered at low temperatures. Specifically, samples doped with 1.0?wt% Bi2O3 and 0.4?wt% Nb2O5 additives exhibited excellent initial permeability (~ 410 @ 1?MHz), high cutoff frequency (~ 10?MHz), high saturation magnetization (~ 54.92?emu/g), and low coercive force (~ 20.32?Oe). These observations indicate that NiCuZn ferrite ceramics doped with appropriate amounts of Bi2O3-Nb2O5 additives are great candidate materials for MLCI applications.  相似文献   

9.
The effects of Sr2+ substitution for Ba2+ on microwave dielectric properties and crystal structure of Ba3-xSrx(VO4)2 (0 ≤ x ≤ 3, BSVO) solid solution were investigated. Such Sr2+ substitution contributes to significant reduction in sintering temperature from 1400 °C to 1150 °C. Both permittivity (r) and quality factor (Q × f) values decreased with increasing x value, which was determined to be related with the descending values of average polarizability and packing fraction, whereas the increase in τf value was explained by the decreased average VO bond length, A-site bond valence. BSVO ceramics possessed encouraging dielectric performances with r = 12.2–15.6 ± 0.1, Q × f = 44,340 - 62,000 ± 800 GHz, and τf = 24.5–64.5 ± 0.2 ppm/°C. Low-temperature sintering was manipulated by adding B2O3 as sintering additive for the representative Sr3V2O8 (SVO) ceramic and only 1 wt.% B2O3 addition successfully contributed to a 21.7% decrease in sintering temperature to 900 °C, showing good chemical compatibility with silver electrodes, which render BSVO series and SVO ceramics potential candidates in multilayer electronic devices fabrication.  相似文献   

10.
In the present work, a systematic study on microwave properties of Ca1-xBixMo1-xVxO4 (0.2 ≤ x ≤ 0.5) solid solution ceramics synthesized by using the traditional solid-state reaction method was conducted. A scheelite structured solid solution was formed in the composition range 0.2 ≤ x ≤ 0.5. We successfully prepared a microwave dielectric ceramic Ca0.66Bi0.34Mo0.66V0.34O4 with a temperature coefficient of resonant frequency (TCF) near to zero and a low sintering temperature by using (Bi, V) substituted (Ca, Mo) in CaMoO4 to form a solid solution. The Ca0.66Bi0.34Mo0.66V0.34O4 ceramic can be well sintered at only 870 °C and exhibits good microwave dielectric properties with a permittivity (εr) ?21.9, a Qf ?18,150 GHz (at 7.2 GHz) (Q = quality factor = 1/dielectric loss; f = resonant frequency), a TCF ? + 0.1 ppm/°C. The chemical compatibility with silver indicated that the Ca0.66Bi0.34Mo0.66V0.34O4 ceramic might be a good candidate for the LTCC applications.  相似文献   

11.
《Ceramics International》2020,46(14):22189-22196
B4C ceramic with the addition of 5 wt % (Ti3SiC2+ CeO2/La2O3) as sintering aids was fabricated by spark plasma sintering at a relatively low temperature of 1650 °C for 5 min at 80 MPa. The phase composition, microstructures, and comprehensive mechanical properties of the ceramics were studied in detail. The existence of reinforced second phase particles, the refinement of the matrix grains, the formation of residual stress along the grain boundaries and the appearance of the mixed fracture mode had a synergetic strengthening effect on the mechanical properties. The flexural strength, fracture toughness and Vickers hardness of B4C ceramics reached 565.2 ± 21.8/551.0 ± 25.2 MPa, 6.28 ± 0.01/6.41 ± 0.12 MPa·m0.5, and 28.51 ± 0.86/27.23 ± 1.08 GPa, respectively. In addition, to reduce the crack sensitivity of the ceramic, the ceramics were pre-oxidized at 800 °C for different durations. The flexural strength was increased by approximately 13.4% after the ceramic was oxidized at 800 °C for 45 min due to the crack-healing effect induced by the oxide glass B2O3 on the ceramic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号