首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Al(1-x)(Si0.5Zn0.5)xPO4 (0 ≤x≤0.6) ceramics were prepared via solid state reaction process. Their structural evolution, sintering behavior and microwave dielectric properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and with a network analyzer. Phase pure AlPO4 could not be obtained for the undoped composition. However, microscopically homogeneous single phase solid solution formed within the compositional range of 0 < x ≤ 0.05. Immiscibility with two-phase structure within apparently single phase solid solution could be observed for other doped compositions (0.1 ≤ x ≤ 0.6). Small level of doping with (Si0.5Zn0.5)3+ (x≤0.4) stabilized the orthorhombic cristobalite-like AlPO4 (C-AlPO4) phase; while further doping led to the transformation from orthorhombic α-C-AlPO4 into cubic β-C-AlPO4 phase. The doping with (Si0.5Zn0.5)3+ considerably improved the sinterability and reduced the sintering temperature to ?900 °C when x = 0.6. The dielectric permittivity slightly increases and the Q × f value decreases with the increasing doping concentration. All composition demonstrate low permittivity (?r ?4) and negative value of τf. Good combined microwave dielectric properties with ?r ?3.9, Q × f?25,000 GHz and τf ? -25 ppm/oC could be obtained for the x = 0.2 composition after sintering at 1200 °C/2h.  相似文献   

2.
Sr1+xSm2Al2O7+x (0 ≤ x ≤ 0.05) ceramics were prepared by a conventional solid-state reaction method. Slight Sr2+ nonstoichiometry dramatically enhanced the microwave dielectric performance of the ceramics. Compared with the stoichiometric material, Sr-deficient ceramics show greatly enhanced microwave dielectric properties. For x = 0.03, the ceramics exhibited good microwave dielectric properties of εr = 18.31, Q × f = 78,000 GHz and τf = 2.28 ppm/°C. ZnO and LiF sintering aids were added to the ceramic to reduce the presintering temperature and enhance the microwave dielectric properties of the ceramics. After 0.25 wt% ZnO and 0.25 wt% LiF were added, the ceramics exhibited microwave dielectric properties of εr = 19.40, Q × f = 81,400 GHz and τf = 3.27 ppm/°C.  相似文献   

3.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

4.
The sinterability, phase compositions, and microwave dielectric properties of LiF-doped nonstoichiometric CaSnxSiO(3+2x) ceramics prepared by the solid-state reaction were investigated. LiF addition effectively reduced the sintering temperature of CaSnxSiO(3+2x) ceramics and inhibited the volatilization of Sn. A pure monoclinic CaSnSiO5 phase was achieved in the 1.0?wt% LiF-doped CaSn0.94SiO4.88 ceramics sintered at 1175?°C, which exhibited good microwave dielectric properties of εr =?11.6, Q?×?f?=?34000?GHz, and τf =?+73.2?ppm/°C. The positive τf value was an atypical and important phenomenon for low-permittivity microwave dielectric ceramics, which could be a promising τf compensator.  相似文献   

5.
Phase composition, morphology, and microwave dielectric properties of (1−x) LiAl0.98(Zn0.5Si0.5)0.02O2 + x CaTiO3 (0.05 ≤ x ≤ 0.20) materials synthesized via the solid state reaction method were investigated. All these densified materials were obtained at a sintering temperature of 1150°C. All compositions showed a major LiAlO2 phase that was accompanied by a minor CaTiO3 phase. The εr value increased gradually from 10.88 to 11.60, whereas the Q × f value remarkably decreased from 33 251 GHz to 13 511 GHz. The τf value changes from −85 ppm/°C to 212 ppm/°C, thereby indicating that CaTiO3 could effectively adjust this value. HBO3-doping was used to further decrease the sintering temperature to 900°C. The optimum value was obtained at 7 wt.% HBO3 doped with microwave dielectric properties of εr = 9.39, × f = 10 224 GHz, and τf = −7.8 ppm/°C. This material also exhibited chemical compatibility with silver, making it a candidate for low temperature co-fired ceramics applications.  相似文献   

6.
A series of temperature‐stable microwave dielectric ceramics, (1?x)(Na0.5La0.5)MoO4x(Na0.5Bi0.5)MoO4 (0.0 ≤ x ≤ 1.0) were prepared by using solid‐state reaction. All specimens can be well sintered at temperature of 580°C–680°C. Sintering behavior, phase composition, microstructures, and microwave dielectric properties of the ceramics were investigated. X‐ray diffraction results indicated that tetragonal scheelite solid solution was formed. Microwave dielectric properties showed that permittivity (εr) and temperature coefficient of resonant frequency (τf) were increased gradually, while quality factor (Q × f) values were decreased, at the x value was increased. The 0.45(Na0.5La0.5)MoO4–0.55(Na0.5Bi0.5)MoO4 ceramic sintered at 640°C with a relative permittivity of 23.1, a Q × f values of 17 500 GHz (at 9 GHz) and a near zero τf value of 0.28 ppm/°C. Far‐infrared spectra (50–1000 cm?1) study showed that complex dielectric spectra were in good agreement with the measured microwave permittivity and dielectric losses.  相似文献   

7.
Low-permittivity ZnAl2-x(Zn0.5Ti0.5)xO4 ceramics were synthesized via conventional solid-state reaction method. A pure ZnAl2O4 solid-state solution with an Fd-3m space group was achieved at x ≤ 0.1. Results showed that partial substitution of [Zn0.5Ti0.5]3+ for Al3+ effectively lowered the sintering temperature of the ZnAl2O4 ceramics and remarkably increased the quality factor (Q × f) values. Optimum microwave dielectric properties (εr = 9.1, Q × f = 115,800 GHz and τf = −78 ppm/°C) were obtained in the sample with x = 0.1 sintered at 1400°C in oxygen atmosphere for 10 h. The temperature used for the sample was approximately 250°C lower than the sintering temperature of conventional ZnAl2O4 ceramics.  相似文献   

8.
Two tetragonal natisite structured Li2TiMO5 (M = Ge, Si) ceramics fabricated using the conventional solid-state reaction method were investigated in terms of the thermal stability, sintering behavior and dielectric properties at radio (RF) and microwave frequency region. At the optimum sintering temperature of 1140 °C, Li2TiGeO5 (LTG) has εr ˜ 9.43, Q × f ˜ 65,300 GHz (at 14.7 GHz), and τf ˜ +24.1 ppm/°C, while Li2TiSiO5 (LTS) sintered at 1180 °C exhibits εr ˜ 9.89, Q × f ˜ 38,100 GHz (at 14.2 GHz), and τf ˜ +50.1 ppm/°C. The positive τf values of the present LTG and LTS are abnormal and extremely important for low-εr microwave dielectric ceramics, which could behave as a promising τf compensator. Moreover, the dielectric spectra of both ceramics revealed a phase transition at low-temperature, exhibiting a dielectric peak, which could account for the negative τε and positive τf in operating temperature ranges.  相似文献   

9.
In this work, spinel-structured MgAl2-x(Zn0.5Mn0.5)xO4 (0 ≤ x ≤ 0.08) single-phase ceramics were prepared through a solid-state reaction route. The substitution of (Zn0.5Mn0.5)3+ for Al3+ at the octahedral site affected the degree of inversion of A/B lattice sites, bond length/strength/valence, and covalency of metal-oxygen bond in the tetrahedron and hence microwave dielectric properties of MgAl2O4. The variation in εr and tanδ of ceramics is investigated in the millimeter wave-terahertz frequency band by combining infrared reflection spectrum and terahertz time-domain spectroscopy. A high Q×f value of 111,010 GHz @ 12.01 GHz, low εr = 8.3, and slightly lower τf = −60 ppm/°C is obtained for MgAl1.98Zn0.01Mn0.01O4 ceramics, which is tuned by adding a small amount of SrTiO3. The composite ceramics exhibited a near-zero τf (2.8 ppm/°C), high Q×f (55,400 GHz @ 11.15 GHz), and low εr (= 8.5), showing a great potential application prospect for 5G/6G wireless communication.  相似文献   

10.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

11.
Microwave communication for 5 G signals is the preferred solution in modern communication networks where fiber optic cables are difficult to deploy or base stations operate incorrectly. Here, a novel Zn1-x(Li0.5Bi0.5)xMoO4 (ZLBMO∼xLB, x = 0.09) ceramic with excellent microwave dielectric properties (εr = 10.5, Q×f = 43,001 GHz, τf = −21.5 ppm/°C) is developed using solid-state reaction method. The sintering temperature is successfully reduced from 850 °C to 725 °C. For the first time, an all-ceramic device for multichannel transmission of 5 G signals is designed using this ceramic material. This device exhibits transverse dual-channel, longitudinal dual-channel, and four-channel transmission under x-, y- and 45°-polarized waves incidence, respectively. The number of channels can be changed by switching the polarization state of the incident wave. This functionality is verified by simulation results of the electric field and phase. This work provides new ideas for the combination of dielectric ceramics and communication devices.  相似文献   

12.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

13.
BaAl2?2xNi2xSi2O8?x (x = 0, 0.005, 0.01, 0.02, 0.03) ceramics were prepared using traditional solid phase reaction method. The microwave dielectric properties, including permittivity (εr), quality factor (Q × f), and temperature coefficient of resonant frequency (τf), were discussed based on the bond valence theory. The first-principle calculation was adopted to determine the site (Ba, Al, and Si) where doping element (Ni2+) would be inclined to occupy. The substitution of Ni2+ for Al3+ contributed to the breaking of Al-O and Si-O bonds and then facilitated the BaAl2Si2O8 (BAS) hexacelsian-celsian transformation. Moreover, this substitution could change the bond strength between cation and oxygen anion due to the variation of the bond valence, which reasonably explained the variation of εr, Q × f, and τf values. Well-sintered and completely transformed celsian ceramics can be obtained after doping with Ni2+. When x = 0.01, compact BaAl1.98Ni0.02Si2O7.99 ceramic exhibited highly promising microwave dielectric properties: εr = 6.89, Q × f = 53, 287 GHz and τf = -25.31 × 10?6 /°C.  相似文献   

14.
A series of Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 (CNTCNx) (0 ≤ x ≤ 0.1) ceramics were prepared via a solid state reaction method. All CNTCNx samples were crystallized into the orthorhombic perovskite structure. The SEM micrographs indicated that the average grain sizes of samples depended on (Cr0.5Nb0.5)4+ concentration. And as (Cr0.5Nb0.5)4+ concentration increased, the average grain size of samples decreased significantly. The short range order (SRO) structure and structural distortion of oxygen octahedra proved to exist in CNTCNx crystals from Raman spectra analysis results. The microwave dielectric properties highly depended on the B-site bond strength, oxygen octahedra distortion, reduction of Ti4+ to Ti3+ and internal strain η. At last, the CNTCN0.06 ceramic sintered at 1400 °C for 4 h exhibited good and stable comprehensive microwave dielectric properties of εr = 92.3, Q × f = 13,889 GHz, τf = + 152.8 ppm/°C.  相似文献   

15.
Li2Ti1?x(Zn1/3Nb2/3)xO3 (0≤x≤0.5) ceramics were prepared by a solid state ceramic route, and the phase purity, microstructure, and microwave dielectric properties were investigated. The XRD results suggest the formation of solid solutions for all studied compositions (0≤x≤5). The dielectric properties are strongly dependent on the compositions, the densifications and the microstructures of the samples. The Q×f value increases with x up to x=0.2 and then decreases with the further increase of x. The best microwave dielectric properties of εr=20.5, Q×f =75,257 GHz, and τf =15.4 ppm/°C could be obtained when x=0.2.  相似文献   

16.
《Ceramics International》2023,49(18):30001-30007
The structure–performance mechanism provides new insights into performance modification and materials discovery. Herein, the electronic structure, Raman vibration, chemical bond factors and enhanced microwave dielectric properties of Zn0.5Zr0.5NbO4 ceramics through oxygen-assisted reaction sintering were investigated by Raman spectroscopy, first-principle calculations, and complex P–V-L theory. Pure-phase Zn0.5Zr0.5NbO4 ceramics were synthesized under oxygen-assisted reaction sintering, confirmed by XRD refinement and Raman analysis. Systematic vibration analysis was first introduced to provide complete mode assignments and Raman shift. Optimized microstructure with full density was obtained through morphology and EDS analysis. First-principle calculations indicated that the d orbit exerts the main contribution to Fermi energy with energy gap of 3.51 eV and Nb–O bonds may possess strong vibration, exhibiting a remarkable effect on dielectric loss. P–V-L results showed that Nb–O bonds have a significant influence on the dielectric constant and Q×f value while the Zn–O bonds dominate the τf value. In addition, high-performance Zn0.5Zr0.5NbO4 ceramics were fabricated through oxygen-assisted reaction sintering at 1250 °C, with εr = 28.4, Q×f = 79,800 GHz, and τf = −47.7 ppm/°C, exhibiting tremendous superiorities for commercial production.  相似文献   

17.
Low-loss (Zn1-xNix)ZrNbTaO8 (0.02?≤?x?≤?0.10) ceramics possessing single wolframite structure are initiatively synthesized by solid-state route. Based on the results of Rietveld refinement, complex chemical bond theory is used to establish the correlation between structural characteristics and microwave performance in this ceramic system. A small amount of Ni2+ (x?=?0.06) in A-site with the fixed substitution of Ta5+ in B-site can effectually raise the Q?×?f value of ZnZrNb2O8 ceramic, embodying a dense microstructure and high lattice energy. The dielectric constant and τf are mainly affected by bond ionicity and the average octahedral distortion. The (Zn0.94Ni0.06)ZrNbTaO8 ceramic sample sintered at 1150?°C for 3?h exhibits an outstanding combination of microwave dielectric properties: εr =?27.88, Q?×?f?=?128,951?GHz, τf =?–39.9?ppm/°C. Thus, it is considered to be a candidate material for the communication device applications at high frequency.  相似文献   

18.
Dense (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 ceramics were synthesized via solid-state reaction. The crystal structure and microwave dielectric properties of the ceramics were systematically investigated. Rietveld refinement revealed that when x ≤ 0.2, the ceramics had a rhombohedral structure with an R-3c space group. When x ≥ 0.5, the ceramics had an orthorhombic structure with a Pbnm space group. Selected area electron diffraction and Raman spectroscopy analyses proved that the microwave dielectric ceramics had a B-site order, which accounted for the great improvement in microwave dielectric properties. The content of oxygen vacancies was identified through X-ray photoelectron spectroscopy, and the change rule of Q × f was closely related to oxygen vacancy content. The perturbation of A-site cations had an important influence on dielectric constant. Specifically, with the increase in Ti4+ content, the perturbation effect of the A-site cations was enhanced and dielectric constant increased. When x = 0.65, the temperature coefficient of resonant frequency of the (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 microwave dielectric ceramics was near zero. The optimal microwave dielectric properties of 0.35LaAl0.9(Mg0.5Ti0.5)0.1O3–0.65CaTiO3 were εr = 44.6, Q × f = 32,057 GHz, and τf = +2 ppm/°C.  相似文献   

19.
Two novel low-εr microwave dielectric ceramics AGa4O7 (A = Ca, Sr; called CGO and SGO, respectively) were analyzed by XRD, SEM, and Raman spectroscopy, showed the monoclinic structure with a C2/c space group. Encouraging microwave dielectric properties (CGO: εr = 9.1, Q × f = 40 600 GHz (f = 12.4 GHz), and τf = ?86.3 ppm °C?1; SGO: εr = 9.2, Q × f = 62 400 GHz (f = 14.6 GHz), and τf = ?63.4 ppm °C?1) are obtained. The PVL chemical bond theory indicated that GaO bonds play a role in affecting the εr and Q × f values. The τf of AGa4O7 (A = Ca, Sr) had adjusted close to zero (0.93CGO-0.07CaTiO3:εr = 11.3, Q × f = 31,043 GHz, and τf = 3.97 ppm °C?1; 0.82SGO-0.18LiCa2Mg2V3O12:εr = 11.8, Q × f = 55,564 GHz, and τf = 5.62 ppm °C?1).  相似文献   

20.
Herein, the influence of Mo6+ substitution on the crystal structure, microstructures, chemical bond characteristics, vibration characteristics and microwave dielectric properties of ZnMoxW1-xO4(x = 0−0.12) ceramics prepared by a solid-state reaction were investigated. The results show that Mo6+ substitution does not produce secondary phase, the densification temperature decreases from 1100 to 925 ℃, and Q × f values increased from 19605 GHz (x = 0) to 61640 GHz (x = 0.06) at 925 ℃, which resulted from the packing fraction, UtW-O and microstructures. Also, the τf values were optimized to −34 ppm/°C due to changes in the degree of structural order and stability of chemical bonds.AfiW-O, molecular polarizability and porosity first led to an increase in permittivity and decrease thereafter. The ZnMo0.06W0.94O4 ceramics sintered at 925℃ exhibited satisfactory properties (εr = 15.10, Q × f = 61,640 GHz, and τf = -34 ppm/°C), providing a potential candidate for microwave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号