首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
BN-AlN alloys are potential candidates to achieve wide band gap material for ultraviolet device applications. By combing density functional theory and evolutionary structure predictions, we systematically explore the thermodynamic, mechanical, dynamical and optical properties of BxAl1?xN alloys. Through structure search, three compounds (cubic (BAl3N4, and B3AlN4, space group P-43m), and tetragonal (BAlN2, space group P-42m)) have been predicted. The calculated relative large formation enthalpies suggest that large miscibility gap exists in BAlN alloys. In addition, computed elastic constants and phonon show that these structures are mechanically and dynamically stable. From the state of the art LDA-1/2 we show that the direct band gap of BN-AlN evinces strong deviation from a linear dependence on B composition. We found -in particular- giant direct band gap bowing parameter of b11.6 eV for the entire range of composition, where b parameter is found to be sensitive to composition x. From a detailed analysis of the physical origin of the optical gap bowing b, we found that structural and chemical contributions play the most significant effects behind the huge optical band gap bowing parameter of BAlN alloys.  相似文献   

5.
In this paper, we discuss a method based on wavelet analysis for the study of the q-index of the Gaussian distribution. We derive q-index from the scale index, iscale, using the expression; q1+2iscale where iscale is a wavelet based tool for measuring the degree of aperiodicity of a dynamical system in the range of 0iscale1. We show that this expression gives consistent results with the numerical approach of q-Gaussian distribution which determines the degree of non-extensivity of a dynamical system in the range of 1<q<3. We also suggest a new entropy calculation method based on the normalized inner scalogram for studying the chaotic characteristics of nonlinear dynamical systems.  相似文献   

6.
《Physics letters. A》2019,383(18):2229-2234
In this work, the exchange bias behavior and magnetocaloric effect have been studied in Mn7Sn4 alloy. The X-ray powder diffraction pattern recorded at room temperature indicates that the sample crystallizes in a single phase with Ni2In-type hexagonal structure (space group P63/mmc). The maximum magnetic entropy change value across paramagnetic/ferrimagnetic transition is about 3.3 J kg−1 K−1 under the magnetic field change of μ0ΔH=0-5T. With further cooling, the reentrant spin-glass-like state is obtained below 150 K, for which the exchange bias effect has been observed. The exchange bias field is ∼7.8 mT and ∼6.7 mT at T=10K when the cooling field is μ0HCF=0.1T and 0.5 T, respectively. The magnetic behavior and the origin of exchange bias in Mn7Sn4 are discussed.  相似文献   

7.
Physically natural assumption says that any relaxation process taking place in the time interval [t0,t2], t2>t00 may be represented as a composition of processes taking place during time intervals [t0,t1] and [t1,t2] where t1 is an arbitrary instant of time such that t0t1t2. For the Debye relaxation such a composition is realized by usual multiplication which claim is not valid any longer for more advanced models of relaxation processes. We investigate the composition law required to be satisfied by the Cole-Cole relaxation and find its explicit form given by an integro-differential relation playing the role of the time evolution equation. The latter leads to differential equations involving fractional derivatives, either of the Caputo or the Riemann-Liouville senses, which are equivalent to the special case of the fractional Fokker-Planck equation satisfied by the Mittag-Leffler function known to describe the Cole-Cole relaxation in the time domain.  相似文献   

8.
First principle calculations have been employed to investigate the effects of Y concentration, pressure and temperature on various properties of Gd1?xYxAuPb (x=0,0.25,0.5,0.75,1) alloys using density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) is used to perform the calculated results of this paper. Phase stability of Gd1?xYxAuPb alloys is studied using the total energy versus unit cell volume calculations. The equilibrium lattice parameters of these alloys are in good agreement with the available experimental results. The mechanical stability of Gd1?xYxAuPb alloys is proved using elastic constants calculations. Also, the influence of Y concentration on elastic properties of Gd1?xYxAuPb alloys such as Young's modulus, shear modulus, Poisson's ratio and anisotropy factor are investigated and analyzed. By considering both Pugh's ratio and Poisson's ratio, the ductility and brittleness of these alloys are studied. In addition, the total density of states and orbital's hybridizations of different atoms are investigated and discussed. Moreover, the effect of pressure and temperature on some important thermodynamic properties is investigated.  相似文献   

9.
10.
We proposed an electro-optic modulator with two-bus one-ring (TBOR) structure to improve the extinction ratio and reduce insert loss. It has a dual output compared with one-bus one-ring structure. In addition, double-layer graphene makes it possible for the modulation in the visible to mid-infrared wavelength range. It shows that this new electro-optic modulator can present two switching states well with low insertion loss, high absorption and high extinction ratio. At λ=1550 nm, when the switching states are based on the chemical potential, μc=0.38 eV and μc=0.4 eV, the insertion losses of both output ports are less than 2 dB, the absorption of the output port coupled via a micro-ring reaches 45 dB and the extinction ratio reaches 14 dB. When the refractive index of the dielectric material is 4.2, the applied voltage will be less than 1.2 V, thus can be used in low-voltage CMOS technology.  相似文献   

11.
12.
13.
14.
《Physics letters. A》2019,383(17):2114-2119
We provide a detailed analysis of a topological structure of a fermion spectrum in the Hofstadter model with different hopping integrals along the x,y,z-links (tx=t,ty=tz=1), defined on a honeycomb lattice. We have shown that the chiral gapless edge modes are described in the framework of the generalized Kitaev chain formalism, which makes it possible to calculate the Hall conductance of subbands for different filling and an arbitrary magnetic flux ϕ. At half-filling the gap in the center of the fermion spectrum opens for t>tc=2ϕ, a quantum phase transition in the 2D-topological insulator state is realized at tc. The phase state is characterized by zero energy Majorana states localized at the boundaries. Taking into account the on-site Coulomb repulsion U (where U<<1), the criterion for the stability of a topological insulator state is calculated at t<<1, tU. Thus, in the case of U>4Δ, the topological insulator state, which is determined by chiral gapless edge modes in the gap Δ, is destroyed.  相似文献   

15.
16.
17.
This work is devoted to quantify the predictive uncertainty in RANS simulation of a non-premixed lifted flame due to uncertainty in the model parameters of the scalar dissipation rate transport equation. The uncertainty propagation and the global sensitivity analysis of the effect of such parameters on the quantities of interest (QoIs) is performed employing Polynomial Chaos Expansions as surrogate models of the uncertain response. This approach is applied on a lifted methane-air jet flame in vitiated coflow, already experimentally investigated by Cabra et al [1]. The results show the effectiveness of the approach to provide predictions with estimates of uncertainty. It is shown that the the uncertainty in the mixture fraction and temperature is negligible as long as only pure mixing happens, then it becomes significant in the regions where ignition begins, starting from z/D=30. Of the four parameters considered, i.e., CD1, CD2, CP1 and CP2, main and total effect sensitivity indices show that the largest contribution to the uncertainty in the flame temperature is given by the two dissipation parameters CD1 and CD2, while the production parameter CP2 has almost negligible impact on the predictions. Lastly, the surrogate models are used to determine an optimum set of parameters that minimizes the distance with the experimental measures, leading to improved predictions of the QoIs.  相似文献   

18.
19.
《Physics letters. A》2020,384(36):126930
We consider quantum bosons with contact interactions at the Lowest Landau Level (LLL) of a two-dimensional isotropic harmonic trap. At linear order in the coupling parameter g, we construct a large, explicit family of quantum states with energies of the form E0+gE1/4+O(g2), where E0 and E1 are integers. Any superposition of these states evolves periodically with a period of 8π/g until, at much longer time scales of order 1/g2, corrections to the energies of order g2 may become relevant. These quantum states provide a counterpart to the known time-periodic behaviors of the corresponding classical (mean field) theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号