首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、引言很多金属及其合金在活性气体中是不稳定的,它们和气体发生化学反应生成化合物。例如生成金属的氧化物、氮化物、硫化物等。在利用汽相沉积方法制备金属防护涂层时也发生类似的反应,生成金属的硅化物、铝化物、硼化物和碳化物等。这种气相和固相之间的反应一般包括气体分子在金属表面上的吸附、气体分子的分解、界面上的化学反应以及反应物质的粒子通过已生成化合物层的扩散。整个反应速度由上述过程中最慢的步骤决定的。实验证明,对于高温下  相似文献   

2.
研究了钛在真空钎焊过程中钎焊温度,保温时间及装配间泽界面反应程度的影响。钎焊过程中钎料组元镍和基体金属钛之间存在着明显的相互扩散过程,即基体金属钛向钎料的溶解和钎料组元镍向基体钛的扩散。镍向钛基体扩散的结果形成了一个明显的扩散层,镍在扩散层内主要以T2Ni化合物形式存在,并且存在较大的晶间渗入倾向。  相似文献   

3.
采用FAPAS烧结工艺原位合成了Al Mg B14-Ti B2复合材料,并分别同步实现了与金属Nb和Mo的扩散连接。利用XRD、SEM和EDS等手段对连接界面扩散层的相组成、微观形貌和元素分布特征进行了分析;探讨了在电场、温度场、压力场多物理场耦合条件下的扩散层形成机制及扩散连接过程。结果表明,Al Mg B14-30%(质量分数)Ti B2复合材料与金属Nb和Mo可以实现同步合成和扩散连接,形成宽170~180μm的均匀致密的扩散连接层;Ti B2在烧结过程中富集于连接界面,并与金属反应生成金属间化合物;硼元素在浓度梯度作用下的连续扩散和金属间化合物的形成是扩散连接的主要机制。  相似文献   

4.
Al2O3的W金属化及其与Nb的Pd钎焊研究   总被引:1,自引:0,他引:1  
在考察Al2O3(95%Al2O3瓷和Al2O3单晶)的W-Y2O3金属化工艺的基础上,制备Al2O3单晶/Pd/Nb的高温钎焊接头,分析Al2O3的W-Y2O3金属化和Al2O3 /Nb的Pd钎焊机制.结果表明:在Al2O3基体和金属化层界面附近存在Y元素的偏聚行为,同时伴随着Al含量的下降.这是由于金属化过程中陶瓷/金属化层界面新生固相产物扩散的结果,且其扩散主要为朝金属化层方向.高温钎焊过程中,金属化层中的W元素和金属Nb扩散进入几乎整个Pd焊料层,这使得在Nb/Pd界面附近及焊料层内形成脆性固溶体或金属间化合物,从而导致微裂纹产生.  相似文献   

5.
原始粉末颗粒边界(PPB)是粉末高温合金中存在的主要缺陷之一,它是热等静压(HIP)过程中由于元素偏析与表面吸附的氧和碳发生化学反应形成了以向粉末颗粒边界聚集为特征的一层网状析出相。PPB的存在阻碍金属颗粒间的扩散与连接,使粉末颗粒之间无法进行充分的冶金结合,形成弱界面,降低了合金的力学性能。本文分析了PPB形成及评价方法方面的相关研究,综述了PPB对直接HIP成型粉末高温合金组织和性能影响的相关研究进展,并介绍了一些预防和消除PPB的主要方法。  相似文献   

6.
MCrAlY涂层在保护基体高温氧化和腐蚀方面发挥着重要作用,可在基体表面形成致密连续的氧化层,阻止阳离子和氧的扩散。随着氧化铝层的生长,导致涂层/氧化层界面处铝浓度降低,抑制了连续的Al2O3层的生长,导致混合氧化物和裂缝以及空隙的形成,使得涂层过早失效。在涂层和基体界面,真空热处理提高了界面的结合强度,改善了涂层与基体的粘附性。然而在高温下的界面扩散过程将对基体产生有害的影响。基体的难熔强化元素,如Ti,W,Mo,可以扩散到涂层中。而且相互扩散过程可在基体形成二级反应区(SRZ),析出拓扑密堆相(TCP)相,如σ,μ和Laves相等,降低高温合金的高温疲劳寿命。在本文中,详细介绍了涂层/基体的界面扩散过程,以及总结了当前对界面扩散效应的理解以及对减少界面扩散所做的努力。  相似文献   

7.
TFDC(Thomas-Fermi-Dirac-Cheng)电子理论的核心思想是"材料研究中,界面边界条件起着十分重要的作用,其边界条件是电子密度处处连续"。建立Cu/Ni相界面扩散反应的TFDC模型对于扩散连接工艺中相界面扩散反应的研究具有重要的意义。文中以Cu-Ni相界面为例,首先依据TFDC电子理论、利用其电子密度处处连续的边界条件,论述了Cu/Ni相界面扩散反应层的形成和生长,然后建立了Cu/Ni相界面扩散反应的TFDC模型。扩散反应层的形成和长大是各相层界面电子密度连续的结果,二元金属扩散反应层的研究可以借助于TFDC电子理论进行深入研究。  相似文献   

8.
凝固过程中TiAl合金与容器的界面化学反应的研究   总被引:1,自引:0,他引:1  
李敏 《铸造技术》2014,(4):730-732
通过对定向凝固过程中TiAl合金与氧化铝、氧化锆坩埚材料的界面化学反应进行研究,分析了夹杂物的分布规律以及反应机制。结果表明:氧化铝坩埚中的SiO2粘结剂与TiAl合金发生界面化学反应,使坩埚内壁的Al2O3颗粒脱落进入TiAl合金熔体,夹杂物在整个试样中呈弥散分布。TiAl合金与氧化锆坩埚的化学反应仅发生在合金试样表面,反应生成的黑色氧化锆具有较大脆性,并在试样表面形成厚厚的粘结层。  相似文献   

9.
采用电场激活固相连接工艺(FADB)实现了AZ31B镁合金与铝粉的固相扩散,观察研究了界面处扩散溶解层的微观形貌和相组成以及界面处元素交互扩散分布情况,测试了扩散溶解层的表面硬度和耐腐蚀性,探讨电场对AZ31B/Al固相扩散的影响.研究结果表明,在FADB条件下,AZ31B/Al结合界面处形成的扩散溶解层由均匀共晶层-溶解过渡层和胞晶区构成;外加电场通过降低界面处生成物的激活能,促进了Mg-Al间的扩散反应,所形成的锯齿状结构有利于提高界面连接强度;试样表面的平均硬度及耐腐蚀性能均高于镁合金母材.  相似文献   

10.
通过扫描电镜、能谱仪、X射线衍射仪研究了Ag-Cu-Ti钎料中的活性元素Ti在钎料与立方氮化硼(CBN)磨粒高温钎焊结合界面的扩散现象,并运用动力学分析对界面反应层的生长过程及反应激活能进行了探讨。结果表明:钎焊过程中,钎料中的活性元素Ti明显向磨粒侧扩散偏聚并发生化学反应,实现了磨粒与基体材料的牢固结合;钎焊CBN磨粒表面生成的TiB2和TiN化合物形貌接近平衡状态下生长的理想形貌;界面反应层在钎焊温度1153K~1193K,保温时间5min~20min之间依据抛物线生长法则所得扩散激活能值表明其生长过程主要受新生TiN影响。  相似文献   

11.
以Mo-Si-B4C混合粉末为涂层原料,采用放电等离子烧结在铌合金表面原位反应烧结制备MoSi2-B4C复合涂层,研究涂层组织形成过程及界面反应特征,考察涂层在1450℃下的抗氧化性能。结果表明,在烧结的升温阶段,MoSi2相就已完全形成,而在保温的初期阶段,部分B4C颗粒又与邻近的MoSi2反应生成了SiC和Mo2B5。烧结过程中,涂层中的Si和B向基体合金扩散,形成了由NbSi2 + NbB外层和Nb5Si3内层组成的互扩散区。涂层在1450℃至少100h内可有效保护基体,表面生成了致密的SiO2-B2O3氧化膜,而互扩散区内NbB的存在有效阻碍了氧化过程涂层中Si的内扩散。  相似文献   

12.
在1200-1400°C下采用热压扩散的方法制备BN包覆Al2O3纤维增强NiAl基复合材料,利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究其界面的显微结构和化学热稳定性。结果表明,在BN层与Ni25.8Al9.6Ta8.3的界面处发生了元素的扩散并伴随有复杂的化学反应发生。在NiAl和BN界面形成了连续的AlN层,Cr原子扩散到BN层中与B发生反应生成Cr5B3,还有小量的富Ta相在近NiAl侧界面处生成。  相似文献   

13.
采用钢/钛/隔离剂/钛/钢对称结构复合板坯,研究了轧制加热温度(850-1000℃)对钛/钢复合板显微组织、基材强韧性和界面结合性能的影响。结果表明,随着轧制加热温度的升高,界面剪切性能逐步下降。加热温度影响着界面反应相的种类和厚度。在850,875,900℃条件下,轧后冷却扩散过程中,C极容易在钛/钢界面形成TiC层,阻碍了Fe向Ti中扩散,因而界面形成TiC和β-Ti反应层;在950℃和1000℃条件下,由于C在β-Ti中的扩散系数为C在γ-Fe扩散系数的10倍以上,C不能在结合界面富集形成有效的TiC屏障,此时Fe能够在Ti中充分扩散,从而形成了Fe-Ti金属间化物层、TiC层、β-Ti层和α-β Ti层。脆性反应相的厚度与加热温度呈正相关关系。脆性相种类和厚度增加使得钛/钢复合板界面剪切强度出现下降。  相似文献   

14.
界面热力学在 Sn 晶须生长研究中的应用   总被引:1,自引:1,他引:0  
林冰  黄琳  简玮  王江涌 《表面技术》2015,44(2):1-7,18
目的研究金属间化合物与Sn晶须在Sn-Cu薄膜体系中形成的热力学机制。方法利用界面热力学理论,通过计算相应的表面能、界面能和临界厚度,研究金属间化合物的形成与Sn晶须的生长过程。结果金属间化合物Cu6Sn5先在Sn晶界与Cu/Sn界面交界处形成,然后沿着Cu/Sn界面生长;产生的应力梯度驱动Sn原子扩散至表面,形成Sn晶须。结论 Sn晶须的生长源于Sn层中金属间化合物的生成,并由此提出了抑制Sn晶须生长的方法 。  相似文献   

15.
采用三元体系半无限扩散偶的高斯方法,求解了SiC/Ti6A14V复合材料界面反应层中相关元素的扩散系数,计算的浓度分布和实测值一致。碳原子通过反应层的扩散服从间隙扩散机制,硅原子的扩散为空位扩散机制。由于碳扩散的振动能最低并且跃迁距离最短,而供硅扩散的空位不足,碳和硅在反应产物TiC,中具有最小的内禀扩散系数,分别为8.9403×10^-16和4.7747×10^-16·m^2·s^-1。研究表明,在SiC/Ti6A14V复合材料界面反应的过程中,反应元素通过反应层TiCx的扩散是一个主要的控制步骤。  相似文献   

16.
论文采用扩散热处理研究了Cu/Ni/Ti复合镀层不同温度下的扩散行为,分析了扩散层结构,并讨论了扩散过程对镀层结构及腐蚀性能的影响。结果表明:由于Cu/Ni/Ti原子之间的互扩散,形成稳定的扩散层,可以有效提高镀层表面耐蚀性能;随着热扩散温度上升到700℃,膜层结构致密,在扩散层中形成了NixTiy金属间化合物及少量的CuxTiy金属间化合物,镀层表面的耐蚀性最好;温度升高到800℃时,在膜层界面处引发了Kirkendall效应,所形成的Kirkendall空位相互聚集长大,形成裂纹或孔洞,使得镀层疏松多孔,从而低了耐蚀性。  相似文献   

17.
研究了Mg-40Al与Mg-20Ce固液界面在475、500和525℃下保温5~30 min的界面反应和扩散层的生长动力学。结果发现,在扩散层中由于Al元素和Ce元素反应生成Al_(11)Ce3、Al_3Ce和Al_2Ce金属化合物。金属化合物的体积分数随着扩散温度的升高而增加。扩散层的生长满足抛物线生长规律,扩散层的扩散激活能为(42±3.7)kJ/mol。实验研究的固液扩散为理解合金熔炼过程中金属化合物的形成提供了理论基础。  相似文献   

18.
W/Re流口在高温下使用时,复合界面处会发生反应扩散而形成一个由固溶体(W),双相σ,双相x,固溶体(Re)4个相组成的过渡层。并作出了不同反应扩散时间的浓度分布曲线,及浓度突变形成的双相区,从而确定了各相成份组成。对经反应扩散后的复合界面进行微观观察发现x相、σ相内有许多间隔式微裂纹,据此认为高温下W/Re流口失效原因是使用过程中上述两x,σ相内裂纹扩散,熔体渗入所致。  相似文献   

19.
MCr Al Y涂层在高温环境下可在涂层表面生成致密连续的氧化层,以阻止阳离子和氧离子的扩散,在保护镍基高温合金基体免受高温氧化和腐蚀方面发挥着重要作用。氧化层主要由α-Al_2O_3组成,其具有较高的热稳定性和化学稳定性,同时在其六方密堆积(HCP)结构中氧离子和金属离子具有较低的扩散系数。随着氧化铝层的生长,使得涂层/氧化层界面铝浓度降低,进一步抑制了连续的Al_2O_3层的生长,导致氧化层中形成混合氧化物和裂缝以及空隙。同时,伴随着界面扩散过程,使得氧化层的微观结构因化学成分的变化而转变,这将对涂层的抗氧化性能产生显著影响。在高温条件下,由于扩散的热活化特性及涂层与基体化学成分的差异,涂层/镍基合金基体界面扩散过程将对基体合金产生有害影响。此时,Al会从涂层内扩散至基体合金中,同时Ni会从基体合金扩散至涂层中,使得基体合金的微观结构发生相转变(γ-Ni相→γ'-Ni_3Al相),形成互扩散区(IDZ)。镍基合金微观结构的相转变使得难熔元素析出,形成二次反应区(SRZ),其主要由富含难熔元素的拓扑密堆积(TCP)相组成,例如σ、μ和Laves相等,且具有枝状晶结构。因此,TCP相的析出将会对镍基合金的高温疲劳寿命产生严重影响。本文综述了MCr Al Y涂层界面扩散的详细过程,同时对界面扩散过程的影响进行了总结。这将有利于深入了解涂层在氧化过程中的组织结构变化和元素扩散行为,对提高涂层的高温抗氧化性能及研究涂层的失效机理具有借鉴意义。  相似文献   

20.
研究了纳米锑掺杂对回流焊过程中Sn-3.0Ag-0.5Cu-xSb(x=0,0.2%,1.0%和2.0%)焊点界面金属间化合物(IMC)生长动力学的影响.借助扫描电镜(SEM)观察了焊点的微观结构,利用X射线能谱分析(EDX)及X射线衍射谱仪(XRD)确定了IMC的相和成分.结果表明,部分纳米锑颗粒溶解在富锡相中形成SnSb二元相,部分纳米锑颗粒溶解在Ag3Sn相中形成Ag3Sb相,剩余部分沉降在界面Cu6Sn5金属间化合物层表面.随着纳米锑含量的增加,IMC厚度减小.当纳米锑的含量为1.0%时,IMC厚度最小.通过曲线拟合,确定出界面IMC层生长指数和扩散系数.结果表明,IMC层生长指数和扩散系数均随着纳米锑含量的增加而减小.当纳米锑的含量为1.0%,IMC层生长指数和扩散系数均有最小值,分别为0.326和10.31×10-10cm2/s.由热力学相图和吸附理论可知,Sn,Sb元素之间易形成SnSb化合物,引起Sn元素的活性、Cu-Sn金属间化合物形成的驱动力和界面自由能下降,从而导致Cu6Sn5金属间化合物生长速率下降,抑制IMC生长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号