首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过在不同加热温度和保温时间下等温奥氏体化,研究了10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒长大行为。结果表明:900~1150℃温度区间内,10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒尺寸随加热温度升高、保温时间延长而增大,且随保温时间延长,晶粒尺寸均匀性下降;由于碳氮化物在1100℃以上发生溶解,1100℃以上奥氏体晶粒发生粗化;1200~1280℃温度区间内,由于δ铁素体相的析出,10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒尺寸随加热温度升高而减小。拟合得到900~1150℃温度区间内10Cr12Ni3Mo2VN钢奥氏体晶粒生长模型为D=6.67×107×t0.303×exp(-1.81×105/RT)。  相似文献   

2.
使用Gleeble-1500D热模拟试验机对9Ni钢进行了热压缩变形实验,研究其在应变量为0.8、 变形温度为800~1150℃、 应变速率为0.1~5 s-1下的热变形行为,并对不同热变形条件下实验样品的微观组织进行了系统研究.研究发现,针对不同的变形条件,真应力-真应变曲线中的流变应力随着变形温度的升高以及应变速率...  相似文献   

3.
《塑性工程学报》2016,(4):96-100
1Cr12Ni3Mo2VN是用于核电常规岛汽轮机末级叶片的新型钢种。在温度850℃~1 200℃,应变速率0.01s-1~20s-1条件下,利用Gleeble3500热模拟试验机对该钢种试样进行了等温压缩试验。采用双曲正弦函数描述流动应力、变形温度和应变速率的关系,获得了该钢种的高温本构关系方程,并采用试验数据验证了方程的准确性,为核电叶片锻造工艺的设计和模拟提供了合理的材料参数。  相似文献   

4.
采用Gleeble-1500热模拟实验机研究了70Cr3Mo钢在不同变形条件下的高温压缩热变形行为,变形温度850~1150℃,应变速率0.01~10 s-1。依据实验数据,分析了应力、应变间的关系,建立了流变应力本构方程和加工图。由应力、应变曲线可以得出:变形温度一定时,应力峰值随着应变速率的增加而增加;应变速率一定时,应力峰值随变形温度的增加而降低。计算分析了真应变为0.5的加工图,结果表明,70Cr3Mo钢在热压缩过程中存在两个失稳区:(1)变形温度为850~940℃、应变速率为0.01~1.6 s-1;(2)变形温度为975~1150℃、应变速率为1~10 s-1。并获得了最佳的工艺参数:变形温度为1000~1150℃、应变速率为0.01~0.36 s-1。  相似文献   

5.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

6.
在变形温度800~1100℃,变形速率0.01~5 s-1范围内,利用Gleeble-1500D热模拟试验机,采用等温压缩实验研究了Fe-25Mn-3Al高锰奥氏体TWIP钢的热变形行为。结果表明,Fe-25Mn-3Al钢流变应力曲线出现一个明显的流变应力峰值,峰值之后流变应力逐渐降低,主要为稳态流变特征。双曲正弦形式的Arrhenius模型可以较好地描述Fe-25Mn-3Al钢热变形流变应力,钢的热变形激活能Q为365.2 kJ/mol。动态再结晶机制为Fe-25Mn-3Al钢热变形过程中最主要的动态软化机制。  相似文献   

7.
采用Gleeble-3500热模拟试验机,研究了耐热钢2Cr12Ni4Mo3VNbN在变形温度为900~1200℃、应变速率为0.01~1 s-1、变形量为0.5条件下的热压缩变形行为和微观组织演化规律。基于真应力-真应变曲线分析不同变形温度和应变速率对试验钢热变形行为的影响,采用Arrhenius双曲正弦方程构建耐热钢2Cr12Ni4Mo3VNbN的流变应力本构模型,并结合动态材料模型(DMM)绘制了热加工图。结果表明,流变峰值应力随变形温度升高或应变速率下降而降低,在应变速率为0.1 s-1时,变形温度达到1000℃后开始出现再结晶,且随变形温度升高再结晶晶粒越大;在不同温度下组织中均发现有δ铁素体,其含量随温度升高而增加。结合热加工图和微观组织分析,确定了耐热钢2Cr12Ni4Mo3VNbN的最佳热加工区域为1068~1172℃, 0.08~0.12 s-1。  相似文献   

8.
利用Gleeble3180热模拟试验机,在变形温度为950~1100 ℃,应变速率为0.001~1 s-1,真应变为0.7的条件下,对X12CrMoWVNbN钢进行了高温单向热压缩试验。通过不同条件下的高温流变曲线分析了变形温度和应变速率对试验钢热变形力学行为的影响。以Arrhenius方程为本构模型,建立了能够预测该钢流动应力的本构方程。基于动态材料模型和试验参数、结果,绘制了该钢不同应变量下的热加工图并结合图进行了组织分析。结果表明,流变峰值应力和稳态应力随温度降低或应变速率升高而升高;功率耗散系数随应变速率降低和变形温度的升高而增大;最优热加工区域功率耗散系数η的值都在0.4以上,且这些区域的变形组织晶粒均匀细小;0.3、0.4、0.5和0.6应变下的最优热加工区域都处于变形温度1050~1100 ℃、应变速率0.001~0.003 s-1的范围。  相似文献   

9.
赵嫚嫚  秦森  冯捷  代永娟  国栋 《金属学报》2020,56(7):960-968
在T92钢的成分基础上添加了Al元素并对Ni含量进行适当调整后制备出新型1Cr9Al(1~3)Ni(1~7)WVNbB高铝铁素体耐热钢。利用Gleeble-3800热模拟试验机,对1Cr9Al(1~3)Ni(1~7)WVNbB高铝钢进行了950~1150℃、0.1~10 s-1应变速率下60%变形量的等温恒速热压缩实验,研究了Al、Ni加入量对钢热变形行为、峰值应力及热变形激活能的影响,并通过拟合得到了含有Zener-Hollomon参数的流变应力表达式,建立了该耐热钢的本构方程。结果表明,Al的添加及Al含量的增大明显降低了热压缩下的流变应力与峰值应力,即明显降低了钢的加工难度;与T92钢相比,4组试样的热变形激活能分别提高了38.136%、19.188%、28.003%和11.915%。  相似文献   

10.
利用Thermecmastor-Z热模拟试验机对COST FB2钢进行了等温压缩试验,研究了其在不同热变形工艺参数下的热变形行为、显微组织演变规律以及最优的热加工工艺窗口。结果表明,热变形过程中,流变应力随着变形温度的升高及应变速率的降低而降低,在不同的应变速率与变形温度下,流变应力曲线呈现出动态再结晶、动态回复与加工硬化特征。基于Arrhenius方程和Zener-Hollomon函数,求得COST FB2钢的热变形激活能Q为449.56 kJ·mol-1。建立了本构模型,该模型预测值与试验值吻合度较高。基于Prasad失稳判据建立了COST FB2钢热加工图,结合热变形后的显微组织特征,发现失稳区主要集中分布于变形温度900~950℃、应变速率0.04~0.5 s-1范围内,其显微组织为沿变形方向拉长的带状组织,并存在局部流动性,对应的功率耗散值η较低;安全区显微组织主要特征是部分动态再结晶组织,功率耗散值η较高。确定了其0.8应变量下合理的热加工工艺窗口为:变形温度975~1050℃、应变速率0.01~0.14 s-1  相似文献   

11.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

12.
借助Gleeble-1500D热模拟试验机,在温度1050~1200 ℃,应变速率0.01~1 s-1,变形量在50%的条件下对LZ50高速铁路车轴钢试样进行热变形压缩试验。通过试验测得该材料不同工艺参数下的真应力-应变曲线,采用Arrhenius双曲正弦函数推导LZ50钢的高温塑性本构方程,并分析了不同热加工条件下LZ50钢的动态再结晶行为。结果表明,LZ50钢对温度和应变速率的变化较为敏感,温度越高,应变速率越低,所对应流动应力值越小。LZ50钢的变形激活能为217 920.626 J/mol。变形温度越高,应变速率越低,再结晶现象越容易发生。  相似文献   

13.
在Gleeble-3500热力模拟试验机上对25Cr3Mo3NiNbZr进行热压缩试验,研究其在温度800~1250℃和应变速率为0. 01 s~(-1)~20 s~(-1)条件下的热变形行为。结果表明:流变应力随变形温度升高而降低,随应变速率提高而增大。根据材料动态模型,计算并分析了合金的热加工图,利用热加工图确定了热变形的流变失稳区,合金在热加工温度为1050~1150℃,应变速率为0. 01 s~(-1)时可加工性最优。  相似文献   

14.
15.
为分析34CrNi3MoV钢的热变形行为,采用Gleeble-1500热模拟试验机进行等温热压缩试验,设置变形温度为800~1200℃、应变速率为0.01~10 s-1,获得相应的流变应力曲线。分析了流变应力对变形参数的敏感性,计算了不同应变量下材料参数α、n、Q和A的值,并利用五阶多项式拟合了各材料参数与应变量的对应关系。采用应变补偿的Arrhenius模型对34CrNi3MoV钢的高温流动应力本构方程进行回归。结果表明:34CrNi3MoV钢在变形温度为1000~1200℃、应变速率为0.01~1 s-1时出现较为明显的动态再结晶曲线特征,并随着应变速率的降低和变形温度的升高,峰值应力越明显。本构方程预测的流动应力与试验结果的吻合度较好,在整个试验范围内的平均相对误差Rav仅为5.52%,表明所构建的模型是可靠的。  相似文献   

16.
通过Gleeble-3200热模拟机对EA4T钢进行热压缩实验,研究了应变速率为0.01~10 s~(-1),变形温度为950~1150℃条件下,EA4T钢的热变形行为和组织演变。分析其流变曲线发现,EA4T钢的峰值应力随着温度增大而减小,随着应变速率增大而增大,得到该材料在高的温度和低的应变速率条件下容易发生动态再结晶。基于Arrhenius双曲正弦方程建立了EA4T钢的热变形本构方程;运用数值计算方法,确定了EA4T钢的峰值激活能和稳态激活能分别为385.4和395.4 kJ·mol~(-1);观察温度以及应变速率对试验钢组织演变的影响发现,动态再结晶晶粒尺寸随着变形温度的增加而增大,随着应变速率的增加而减小;通过测量晶粒度,获得动态再结晶晶粒尺寸和Z参数的关系式。  相似文献   

17.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

18.
吴文昊 《铸造技术》2014,(3):463-465
研究了22Cr-5Ni-3Mo-N高合金钢在热压缩过程中不同变形温度和变形速度下的热变形行为,并建立了双曲正弦函数、幂函数和指数函数本构方程。结果表明,在一定的变形速度范围内,在相同的应变和变形速度条件下,随着变形温度的提高,流变应力下降;在相同的应变和变形温度条件下,随着变形速度的提高,流变应力增加;但是当变形速度达到50/s时,应力应变曲线呈现波动状态,发生了塑性失稳。并且,双曲正弦函数、幂函数和指数函数本构方程的相关系数分别为0.998、0.984和0.979,表明双曲正弦函数型本构方程计算应力值与实验真实值最吻合。  相似文献   

19.
为探究Ti-5.5Al-3Nb-2Zr-lMo钛合金热变形过程中的动态热变形行为及组织演变规律,采用Gleeble-1500热模拟实验机进行了热压缩实验(变形温度855~1015℃、应变速率0.001~10 s-1、变形量60%),构建了 Arrhenius型热变形本构方程,并对热压缩后的微观组织和晶界结构进行了分析....  相似文献   

20.
使用Gleeble-3800热模拟机对42CrMo钢在变形温度为1 123~1 223 K,变形速率为0.1~10 s-1下进行热压缩实验,研究了其热变形行为,构建了42CrMo钢的本构方程;通过对材料常数(α,n,Q和ln A)的分析,得到了流动应力的预测模型;绘制了42CrMo钢的热加工图,得到最优热加工工艺区间。结果表明:材料对温度、应变速率敏感,其流变应力随着变形温度增加和应变速率降低而减小。流动应力预测模型预测精度为0.987,42CrMo钢最优工艺范围为:变形温度1 140~1 223 K,应变速率0.1~1.5 s-1。本研究可对42CrMo钢热变形加工工艺制定提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号