首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可控制自由基聚合DPE法制备P(AA-MMA-ST)/Fe3O4磁性复合微球   总被引:2,自引:0,他引:2  
在制备超细Fe3O4磁性粒子的基础上, 利用可控制自由基聚合DPE法制备出平均粒径为265 nm的P(AA-MMA-ST)/Fe3O4磁性复合微球. 采用XRD, TGA, FTIR等手段对所制备的磁性复合微球的形态、结构及磁响应性等进行了表征, 结果表明用DPE法制备出的磁性复合微球磁含量较高, 粒径比较均匀.  相似文献   

2.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

3.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40 nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83 A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

4.
介绍了一种采用无毒廉价的前驱物制备Fe3O4@SiO2-Ag磁性纳米微球的快捷方法,制备的Fe3O4@SiO2-Ag纳米微球在NaBH4存在下可以催化还原染料污染物.实验结果表明,Fe3O4@SiO2-Ag磁性纳米粒子保持了Ag纳米粒子和Fe3O4纳米粒子的双重优点,不仅对染料罗丹明B和曙红Y具有良好的催化还原效率,而且可以在外加磁场作用下从溶液中快速有效的分离.催化还原反应速率与反应温度及Fe3O4@SiO2-Ag催化剂用量有关,反应体系中表面活性剂和无机盐(Na2SO4)的存在也会影响催化剂的催化活性.该Fe3O4@SiO2-Ag磁性纳米粒子在工业染料污染物处理方面具有应用前景.  相似文献   

5.
以水热法制备的高磁饱和强度Fe3O4纳米颗粒为核,正硅酸乙酯(TEOS)为前驱体,采用改进的Stöber法,制备介孔SiO2包覆Fe3O4磁性核壳复合微球。利用XRD、SEM、TEM、N2吸-脱附、FTIR和VSM对制备样品的物相结构、形貌和磁性能进行了测试表征。研究结果表明,制备的复合材料呈球形,粒径分布均一,材料的比表面积和磁饱和强度分别为413 m2·g-1和68.93 emu·g-1。研究了TEOS的添加量对复合微球形貌的影响,随着TEOS添加量的增加,SiO2壳层增厚,复合粒子形貌均匀,饱和磁化强度有所下降,仍具有良好的超顺磁性。在此基础上,通过接枝法在复合微球的表面接枝-NH2,制备了一种新型磁性纳米吸附剂(Fe3O4@SiO2@mSiO2-NH2),进而研究了其对水中重金属离子Cr(Ⅳ)的吸附性能。通过动力学拟合,Fe3O4@SiO2@mSiO2-NH2对Cr(Ⅳ)的吸附过程是准二级动力学模型占主导地位。探究了该材料对Cr(Ⅳ)的吸附过程和吸附机理。结果表明,其吸附机理及吸附容量与Cr(Ⅳ)的离子形态及-NH2有关,并通过吸附剂与吸附质之间的电子共用或静电吸附实现。  相似文献   

6.
Fe3O4/Au复合微粒制备条件及性质研究   总被引:2,自引:3,他引:2       下载免费PDF全文
在纳米级Fe3O4作为种子, 过量的盐酸羟胺为还原剂的条件下, 将Au3+在分散于水相中的Fe3O4胶态种子表面还原为Au0, 得到核壳结构, 粒径为170 nm左右的Fe3O4/Au磁性复合微粒, 并对磁性复合微粒的制备条件进行了优化. 通过激光粒度散射仪和透射电子显微镜分析了不同条件下磁性复合微粒的粒径分布及形貌, 结果表明: Fe3O4种子的磁响应性、悬浮稳定性以及种子表面Au3+的还原条件等是得到单分散性、粒径均一、磁响应性和悬浮性能好的胶态Fe3O4/Au复合微粒的主要影响因素. 通过紫外-可见分光光度计对Fe3O4/Au复合微粒的扫描分析发现, 磁性复合微粒在可见光区域呈现与胶体金类似的特征吸收峰, d (0.5) =168 nm的Fe3O4/Au磁性复合微粒的最大吸收峰位于波长625 nm处.  相似文献   

7.
采用乙二醇为溶剂,无水FeCl3为铁源,聚丙烯酸为稳定剂,通过改变3-氨基丙醇的用量,合成了一系列不同微球直径和晶粒大小的超顺磁Fe3O4微球。高分辨率透射电镜和X-射线衍射分析证实所得产物为Fe3O4,红外光谱和热重分析表明,微球表面成功包覆聚丙烯酸。微球的大小和组成微球的颗粒粒径分别用透射电镜和X-射线衍射分析,结果表明,所得微球的直径随着3-氨基丙醇的用量增加而减小,组成微球的颗粒粒径随着3-氨基丙醇的用量增加而增大。磁性测试表明所制备微球室温下具有良好的超顺磁性。该制备方法步骤简单,可望用于其他无机氧化物纳米微球或颗粒的制备。  相似文献   

8.
以FeCl3·6H2O为单一铁源、1, 2-丙二醇为还原剂和溶剂、尿素为均相沉淀剂、顺丁烯二酸为添加剂, 通过简单一步溶剂热法于160℃制备出了形貌均一、单分散性好、尺寸约为200 nm的Fe3O4纳米微球。所制备的Fe3O4纳米微球不仅具有很高的磁化强度, 而且在利用过氧化氢氧化降解二甲酚橙(XO)的过程中显示出很好的催化活性。紫外可见分光光度法考察表明, 不加入Fe3O4催化剂时, 1 h内双氧水对二甲酚橙的脱色率仅为6.2%, 而加入Fe3O4纳米微球后, 双氧水对二甲酚橙的脱色率在1 h内即可达到100%, 循环使用10次后, Fe3O4纳米微球仍保持高的催化活性和结构稳定性。  相似文献   

9.
 采用种子乳液聚合方法制得了微米尺度的高磁性物质含量的磁性复合微球.聚合体系中,以0.7~0.8 μm的Fe3O4磁性聚集体细乳液作为种子,将苯乙烯,二乙烯基苯作为聚合单体加入到磁性聚集体细乳液中,对Fe3O4磁性聚集体进行溶胀后进行聚合.研究了聚合过程中,溶胀时间对复合微球形貌和磁性物质含量的影响,获得系列形貌微球.通过透射电镜(TEM)、热重分析(TGA)、红外分析(FTIR)、振动样品磁强计(VSM)等表征手段对所制备的磁性聚合物微球进行分析表征.结果显示,所得到的磁性聚合物微球粒度为0.7~1 μm,尺寸分布较均一,具有超顺磁性,磁性物质含量为29 wt%~57 wt%.然后又通过丙烯酸和苯乙烯共聚对微球表面羧基功能化后,得到了表面羧基密度为0.92 mmol/g的微球,再将所制备的微球与生物分子偶联后(以hCG作为模式待检分子),在化学发光免疫检测上进行了初步的应用,取得到了较好的应用结果.  相似文献   

10.
Fe3O4@SiO2@polymer复合粒子的制备及在药物控制释放中的应用   总被引:1,自引:1,他引:0  
本文通过多步反应制备了一种新型的、多层结构的、多功能的磁性纳米复合粒子, (Fe3O4@SiO2@polymer). 纳米复合粒子内核是磁性Fe3O4纳米粒子, SiO2包裹在Fe3O4上能够使其稳定分散和保护其不被腐蚀氧化; 中间层是生物相容的聚天冬氨酸(PAsp)载药层; 最外层是亲水的聚乙二醇(PEG)稳定层. 磁性纳米复合粒子各层都是生物相容的, 利用静电作用将抗癌药物阿霉素(DOX)负载在磁性纳米复合粒子中, 通过PAsp的pH响应调节了DOX的释放速率.  相似文献   

11.
采用季铵盐化壳聚糖(HTCC)对Fe3O4进行表面改性, 成功制备在模拟生理环境中悬浮稳定的超顺磁性Fe3O4/HTCC复合纳米粒。通过动态光散射、透射电镜、振动样品磁强计、磁共振等手段对材料的性能进行表征, 并考察了其细胞相容性及磁共振造影性能。结果表明: 该方法所制备的超顺磁性复合纳米粒粒径均一, 模拟生理环境中具有良好的分散稳定性;体外实验表明该磁性纳米粒具有良好的细胞相容性;大鼠体内肝脏磁共振造影实验表明Fe3O4/HTCC纳米粒注入后, 大鼠肝实质信号强度明显下降, 因此Fe3O4/HTCC纳米粒有望作为潜在的阴性造影剂应用于肝磁共振造影检测。  相似文献   

12.
采用季铵盐化壳聚糖(HTCC)对Fe3O4进行表面改性,成功制备在模拟生理环境中悬浮稳定的超顺磁性Fe3O4/HTCC复合纳米粒。通过动态光散射、透射电镜、振动样品磁强计、磁共振等手段对材料的性能进行表征,并考察了其细胞相容性及磁共振造影性能。结果表明:该方法所制备的超顺磁性复合纳米粒粒径均一,模拟生理环境中具有良好的分散稳定性;体外实验表明该磁性纳米粒具有良好的细胞相容性;大鼠体内肝脏磁共振造影实验表明Fe3O4/HTCC纳米粒注入后,大鼠肝实质信号强度明显下降,因此Fe3O4/HTCC纳米粒有望作为潜在的阴性造影剂应用于肝磁共振造影检测。  相似文献   

13.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   

14.
表面图案化磁性复合微球的原位制备与表征   总被引:2,自引:0,他引:2  
王公正  夏慧芸  张颖  彭世杰 《化学学报》2007,65(18):2051-2056
采用反相悬浮聚合法合成了丙烯酸(AA)含量不同的N-异丙基丙烯酰胺-丙烯酸共聚物P(NIPAM-co-AA)微凝胶, 并以其作为微反应器, 通过原位外源沉积法制备了一系列微米级、表面具有图案化结构的SiO2-Fe3O4-P(NIPAM-co-AA)磁性复合微球. 实验结果表明, 复合微球的表面结构与微凝胶的组成、Fe3O4和SiO2的沉积量有关. 在微球表面进行修饰, 可得到表面带有氨基等官能基团的磁性复合材料. 将这种功能化磁性微球用于识别生物大分子并进一步用于生物医学领域具有重要的意义.  相似文献   

15.
以辐射过氧化的表面活性剂胶束为引发中心和交联中心, 制得具有优异机械性能的聚丙烯酰胺(PAAm)水凝胶, 并通过原位化学共沉淀法向其中引入Fe3O4粒子, 得到了磁性复合水凝胶. 扫描电子显微镜(SEM)表征发现磁性粒子在凝胶中分布均匀, 其粒径约为30 nm. X射线衍射(XRD)表征证实所引入的纳米粒子为尖晶石型Fe3O4. 磁性能测试表明, PAAm/ Fe3O4复合水凝胶具有超顺磁性特征. 该复合凝胶具有较优异的机械性能, 其断裂伸长率可以达到1200%, 拉伸强度最大可达0.10 MPa. 另外, 该复合凝胶表现出良好的形变回复特性.  相似文献   

16.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

17.
混合表面活性剂体系聚苯乙烯/Fe3O4复合纳米粒子的制备   总被引:1,自引:0,他引:1  
宋根萍  伯洁  郭荣 《中国化学》2005,23(8):997-1000
在TritonX-100/十二烷基苯磺酸钠混合表面活性剂体系中,制得核-壳型结构的聚苯乙烯/Fe3O4复合纳米粒子。通过X-射线衍射、傅立叶红外光谱测定表明,复合纳米粒子结构组成以Fe3O4为核聚苯乙烯为壳,证明聚苯乙烯在Fe3O4纳米粒子上的包覆是成功的。电子显微镜观察结果表明:Fe3O4纳米粒子的粒径约10 nm,聚苯乙烯/Fe3O4复合纳米粒子的粒径为25-35 nm。  相似文献   

18.
吴伟  贺全国  陈洪  汤建新  聂立波 《化学学报》2007,65(13):1273-1279
超声条件下, 在乙醇分散的3-氨丙基三乙氧基硅烷(APTES)功能化的磁性Fe3O4纳米粒子和四氯合金酸的混合溶液中滴加柠檬酸钠, 成功地制备了磁性Fe3O4/Au复合纳米粒子. 采用X射线粉末衍射仪(XRD)、紫外吸收可见光谱(UV-Vis)、带有电子能谱仪(EDS)的扫描电子显微镜(SEM)、透射电子显微镜(TEM)、光电子能谱(XPS)、超导量子干涉仪(SQUID)等方法, 对复合粒子的形态、结构、组成以及磁学性质进行了表征. 结果表明: 在此条件下制得的复合粒子粒径在30 nm左右, 室温下磁化强度可达63 emu/g.  相似文献   

19.
以溶剂热法制备氨基功能化的Fe3O4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO2层和介孔TiO2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe3O4表面包覆上了无定形结构的SiO2和TiO2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe3O4颗粒的尺寸在40~50 nm之间,Fe3O4@SiO2@mTiO2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m2·g-1)和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

20.
Fe3O4/Au纳米复合粒子及其光学性质   总被引:4,自引:3,他引:4       下载免费PDF全文
在过量Fe3O4种子的存在下, 通过盐酸羟氨对四氯合金酸的还原, 制备得到了100 nm以下核壳结构Fe3O4/Au磁性复合粒子, 体系中未反应的Fe3O4种子可通过稀盐酸的处理去除. Fe3O4/Au复合粒子表现出特有的纳米光学效应, 可见光区等离子体共振吸收峰的最大波长与纳米复合粒子的粒径、掺合的种子量以及分散介质的离子强度等有关. 随着纳米复合粒子粒径的增大和分散介质离子强度的增高, 最大吸收峰发生红移, 并出现峰形展宽的情况. 以水作为分散介质, 种子去除得愈彻底, 体系纳米粒子粒径就愈均一, 特征吸收峰会变窄. 这种纳米复合粒子的光学性质对生物分子检测新方法的建立具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号