首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
纳米TiO2填充改性PP的力学性能研究   总被引:18,自引:3,他引:15       下载免费PDF全文
为了进一步提高通用塑料PP (聚丙烯) 的力学性能,采用共混方法制备了经钛酸酯偶联剂NDZ-201处理的纳米TiO2/PP复合材料,并通过对DSC熔融曲线的分析以及材料冲击破坏断口的形貌观察,研究了纳米TiO2质量分数和钛酸酯NDZ-201用量对PP的增韧、增强效果的影响。试验结果表明:纳米TiO2/PP复合材料的抗弯强度、抗弯模量和冲击强度随着纳米TiO2含量的升高明显提高,当含量超过5% 时,力学性能增势趋缓,并且随着纳米粒子含量的增加力学性能出现下降的趋势;纳米TiO2的加入提高了PP的结晶度,使PP结晶为较多细小的β晶,此外弥散分布的纳米TiO2粒子显著增加了裂纹扩展阻力;在纳米TiO2加入量一定的情况下,PP的力学性能与钛酸酯偶联剂NDZ-201用量呈近似抛物线的关系,当NDZ-201用量为2% 时对PP的增强增韧效果最显著。   相似文献   

2.
以纳米CaCO3浆料和丁苯胶乳、 羧基丁苯胶乳、 丁腈胶乳为原料, 采用共凝聚法分别制备了三种纳米CaCO3-粉末橡胶复合粒子, 并制备了三种纳米CaCO3-粉末橡胶/聚氯乙烯(PVC)复合材料, 系统研究了复合粒子含量对PVC力学性能的影响, 并探讨了复合粒子的增强增韧机制。结果表明: 复合粒子在PVC树脂中分散均匀, 复合粒子中的纳米CaCO3粒子以"裸露态"和橡胶"包裹态"两种形式存在于PVC基体中; 三种复合粒子均能显著提高PVC的缺口冲击强度, 纳米CaCO3-粉末丁腈橡胶(CaCO3-NBR)能同时起到增强增韧的效果, 而纳米CaCO3-粉末丁苯橡胶(CaCO3-SBR)在提高缺口冲击强度的同时也损失了PVC原有的刚性, 使其弯曲模量和拉伸强度大幅度降低, 纳米CaCO3-粉末羧基丁苯橡胶(CaCO3-X-SBR)的改性效果鉴于前两者之间; 复合粒子与PVC基体的相容性是影响复合粒子增强增韧改性效果的决定性因素, 相容性好的复合粒子能同时起到增强增韧的效果。  相似文献   

3.
熔融混炼制备了4 种大分子相容剂改性的纳米CaCO3 / PP 复合材料, 用DSC 和WXRD 研究了复合材料中PP 的结晶与熔融行为。结果表明, 纳米CaCO3对PP 结晶存在异相成核作用, 并诱导PP 形成β晶。相容剂丙烯酸接枝聚丙烯( PP-g-AA) 和马来酸酐接枝聚丙烯( PP-g-MA) 也存在异相成核作用, 提高PP 结晶温度。PP-g-AA、PP-g-MA 和马来酸酐接枝乙烯2辛烯共聚物(POE-g-MA) 与纳米CaCO3存在异相成核协同作用, 进一步提高PP 的结晶和熔融温度, PP-g-MA 和POE-g-MA 还促使纳米CaCO3诱导PP 生成β晶。但马来酸酐接枝乙烯2醋酸乙烯酯共聚物( EVA-g-MA) 则阻碍纳米CaCO3对PP 的异相成核作用。实验结果表明纳米CaCO3 / PP 复合材料中PP 结晶的异相成核作用与纳米CaCO3 / PP 界面的相互作用有关, 而纳米CaCO3 / PP 界面的相互作用与相容剂的结构有关。   相似文献   

4.
首先采用熔融共混法制备聚丙烯/热塑性动态硫化橡胶(PP/TPV)二元共混物,进一步添加纳米CaCO3制备了PP/TPV/纳米CaCO3三元共混物。探究了TPV用量对PP/TPV二元共混物力学性能和微观形貌的影响,以及纳米CaCO3用量对PP/TPV/纳米CaCO3三元共混物的力学性能、微观形貌、耐热性能及晶型的影响。结果表明,TPV能够有效增韧PP,当TPV用量仅为5份时,PP/TPV二元共混物的冲击强度达到8.2kJ/m2,较PP增加了95%,同时拉伸强度仅下降了4%;纳米CaCO3能够诱导PP中β晶型的生成,随着纳米CaCO3在PP/TPV/纳米CaCO3三元共混物中用量的增加,缺口冲击强度呈现先增加后下降的趋势,而拉伸强度变化不大。当纳米CaCO3用量为3份时,三元共混物的抗冲击性能最好,同时耐热性能也得到提升,可应用于汽车、建筑等行业。  相似文献   

5.
详细研究了聚氯乙烯(PVC)、氯化聚乙烯(CPE)和纳米碳酸钙(Nano-CaCO3)的三元复合体系的加工工艺和组成变化与力学性能之间的关系。研究表明:如果先将CPE等弹性体和纳米CaCO3制成母粒,然后再与PVC进行混合,有利于纳米粒子在基体中的分散,在复合体系中,纳米CaCO3和CPE达到了协同增韧PVC的作用,同时,纳米CaCO3具有补强作用,且当母粒的组成为CPE/纳米CaCO3=1∶2时,对PVC改性效果最佳。   相似文献   

6.
木塑复合材料作为室外建筑装饰材料时,暴露在紫外光的照射下,易老化导致其力学性能降低、使用寿命减少。将具有高效紫外线屏蔽能力的金红石型纳米TiO2经硅烷偶联剂KH-570表面改性后,与木纤维(WF)、聚丙烯(PP)等制备了TiO2-WF/PP复合材料。对TiO2-WF/PP复合材料进行了人工加速紫外老化,并利用FTIR、TG、SEM、力学性能分析、颜色变化分析等手段,探究了纳米TiO2对WF/PP复合材料抗紫外老化的影响。结果表明:改性纳米TiO2粒子在WF/PP复合材料中均匀分散,无明显团聚,且其加入显著提高了复合材料的热稳定性;TiO2-WF/PP复合材料随着老化时间的延长,力学性能下降相对较小且颜色变化较小。当纳米TiO2的质量分数为2 wt%~3 wt%,老化2 000 h时后,TiO2-WF/PP复合材料的拉伸强度、冲击强度仅分别下降10.0%和12.6%;未加入纳米TiO2颗粒的WF/PP复合材料,则分别下降20.2%和22.6%。   相似文献   

7.
辜琳然  刘文娟  熊欢  吴汉美 《功能材料》2022,53(4):4150-4154
以纳米CaCO3作为掺杂填料,在普通硅酸盐水泥中掺入不同含量的纳米CaCO3(0,2%,4%和6%)(质量分数),制备出了一系列纳米CaCO3混凝土复合材料。对其晶格结构、微观形貌、孔隙分布、力学性能和抗碳化性能进行了分析表征,探讨了纳米CaCO3增韧混凝土复合材料的机理。结果表明,适量纳米CaCO3的掺杂,使混凝土复合材料的水化产物晶型更好、结晶度更高,表面变得更加致密化和均匀化,且有效降低了有害孔及多害孔的占比,提高了无害孔和少害孔的占比。当纳米CaCO3的掺杂含量为4%(质量分数)时,混凝土复合材料表面的改善效果最好,碳化深度最低为5.91 mm,抗压强度和劈裂强度均达到了最大值,分别为37.92和2.37 MPa。综合可知,纳米CaCO3的最佳掺杂比例为4%(质量分数)。  相似文献   

8.
微纳米SiO2/PP复合材料增强增韧的实验研究   总被引:1,自引:0,他引:1  
为了研究无机刚性颗粒对通用塑料聚丙烯 (PP) 的力学性能的影响, 采用熔融共混方法制备了经硅烷偶联剂A-151处理的SiO2/PP 复合材料, 并通过其缺口冲击、 拉伸、 弯曲试验和冲击断面的形貌观察, 分析研究了微纳米SiO2颗粒大小、 填充量、 表面改性以及不同颗粒大小SiO2混合物对PP复合材料增韧、 增强效果的影响。实验结果表明: 纳米SiO2的加入可以同时改善其韧性、 刚性和强度; 填充量相同, 颗粒越细, SiO2/PP复合材料的力学性能越好。SiO2经改性后填充到PP基体中, 明显改善了颗粒在基体中的分散性及基体与颗粒之间界面结合性能, 使复合材料的综合力学性能得到提高。不同颗粒大小的SiO2混合后填充到PP基体中, 混合SiO2的协同效应使复合材料拉伸、 弯曲性能进一步提高, 对PP基体具有更好的增强效果, 但其冲击性能下降。   相似文献   

9.
崔衍刚  张锐  宁晓骏 《功能材料》2022,(7):7083-7087
以纳米CaCO3为增强材料,通过预聚体法制备了不同纳米CaCO3掺杂的聚氨酯复合材料,研究了纳米CaCO3改性聚氨酯复合材料的力学性能、微观形貌、磨损性能和热稳定性能。结果表明,纳米CaCO3的掺杂没有改变聚氨酯的结构,但改善了复合材料的微观形貌和整体的均匀性,提升了复合材料的力学性能、磨损性能和热稳定性。随着纳米CaCO3掺杂量的增加,改性聚氨酯复合材料的拉伸强度、断裂延伸率和残余量先升高后降低,磨损量先降低后升高。当纳米CaCO3的掺杂量为3%(质量分数)时,复合材料的拉伸强度、断裂延伸率和残余量达到了最大值,分别为33.7 MPa、510.2%和4.4%,磨损量最低为50.1 mg。综合分析可知,纳米CaCO3的最佳掺杂量为3%(质量分数)。  相似文献   

10.
通过球磨分散法和熔融共混法制得纳米Sb2O3/溴化环氧树脂-聚丙烯(BEO-PP)阻燃复合材料试样。采用XRD、DSC、拉伸和冲击性能测试,研究了纳米Sb2O3/BEO-PP阻燃复合材料的力学性能及其增强机制。研究结果表明:采用球磨法改性后的纳米Sb2O3颗粒在PP基体中的分散性和黏结性能得到明显改善;纳米Sb2O3颗粒的加入可改善PP基复合材料的强韧性;随着纳米Sb2O3质量分数的升高,纳米Sb2O3/BEO-PP复合材料的力学性能呈现出先升后降的趋势,PP基体的结晶度逐渐增高;当纳米Sb2O3颗粒添加量为2wt%时,纳米Sb2O3/BEO-PP复合材料表现出优异的综合性能。  相似文献   

11.
研究了纳米碳酸钙/ SBS 或mSBS/ 聚苯乙烯共混物体系的力学性能和形态。由于mSBS 和纳米碳酸钙较强的相互作用, 在PS 复合材料体系中, 更多的纳米碳酸钙进入弹性体相, 原位形成了以纳米碳酸钙为核、弹性体为壳层的结构。这种结构增加了弹性体的体积分数, 放大了弹性体的作用, 减少了分散到脆性PS 基体中的纳米碳酸钙粒子(尤其是纳米碳酸钙团聚体) 数量, 从而避免了对复合材料体系的不利影响; 另一方面, 可通过提高无机粒子的填充率降低材料成本。   相似文献   

12.
采用种子乳液聚合法合成了具有核壳结构的纳米C aCO3/ACR复合胶乳。将其与PVC进行共混,考察了不同界面结构对复合材料力学性能的影响,并用TEM、SEM对复合粒子分散情况及共混物断面形态进行了考察。结果表明,纳米复合粒子在PVC基质中达到了纳米级分散;用钛酸酯处理的纳米C aCO3优于用硬脂酸处理的纳米C aCO3的改性效果;核层与壳层单体比、壳层单体比都存在最佳值。  相似文献   

13.
纳米碳酸钙的表面改性及其界面行为   总被引:6,自引:0,他引:6  
研究了在水中利用季铵型阳离子表面活性剂对纳米CaCO3进行表面改性.对改性前后的纳米CaCO3进行了透射电镜(TEM)分析.采用ZETA电位、分散体系浊度、沉降体积、表观黏度等分析方法,对改性前后纳米CaCO3在水中的界面行为进行评价.另外,通过声波粒度仪对改性前后纳米CaCO3分散液的粒度分布进行了测定.实验结果表明,经表面改性后,纳米CaCO3在水中的润湿性及分散性有很大改善.  相似文献   

14.
纳米CaCO3复合微粒增韧增强PC/ABS合金   总被引:2,自引:0,他引:2  
经甲基丙烯酸甲酯和丙烯酸丁酯双单体聚合包覆的纳米碳酸钙形成了核壳结构增韧复合微粒。在双螺杆挤出机中采用二次挤出法制备出PC/ABS/纳米碳酸钙复合材料。研究纳米碳酸钙复合微粒对PC/ABS合金力学性能的影响表明:添加适量纳米CaCO3复合微粒,PC/ABS合金的缺口冲击强度和拉伸强度都得到提高。纳米CaCO3复合微粒具有无机纳米颗粒和弹性体双重协同增韧的作用,其表面的聚合物分子链与基体树脂起到嵌段增容作用。  相似文献   

15.
稀土β成核剂改性纳米CaCO_3/PP复合材料的研究   总被引:1,自引:0,他引:1  
讨论了稀土β成核剂(WBGⅡ)对纳米CaCO_3/PP复合材料力学性能的影响,并借助WAXD、DSC及PLM研究了PP、纳米CaCO_3/PP和WBGⅡ/纳米CaCO_3/PP复合材料的结晶行为及晶体形态.结果表明:加入少量WBGⅡ后,聚丙烯基复合材料的晶型和球晶形态发生明显变化,同时纳米CaCO_3/PP复合材料的冲击强度和综合力学性能均显著提高.  相似文献   

16.
用普通熔融共混与低剪切应力场下聚合物/纳米粒子的分散共混方法制备出聚丙烯/无机纳米粒子复合材料,采用示差扫描量热法(DSC)与偏光显微镜(PFM)对试样的结晶行为进行研究发现:在填充粒子含量相同情况下,均匀分散的纳米粒子可以较大提高聚丙烯的结晶温度,结晶速率,使晶体尺寸减小,而普通熔融共混制备的试样中,纳米粒子虽然也一定程度增加了聚合物的结晶温度,却并不改变晶体的尺寸。结果表明,当制备聚合物/纳米粒子复合材料时,纳米粒子在基体中的分散程度极大地影响聚合物基体的结晶行为。  相似文献   

17.
Al2O3/TiB2/SiCw三元复合材料的力学性能及显微结构   总被引:3,自引:0,他引:3  
以Al2O3为基体,SiC晶须和TiB2颗粒两种增韧剂,采用热压烧结工艺制备了Al2O3/TiB2/SiCw三元复合陶瓷材料。研究了热压工艺参数对材料致密度的影响和晶须含量对该复合材料的力学性能和显微结构的影响。结果表明;随晶须含量的增加,该复合材料的热压温度和保温时间需要相应的增加;晶须拔出、裂纹偏转和晶须的桥接为该复合材料的主要增韧机理;随晶须含量的增加,该材料的室温断裂韧性增加;该材料的断裂韧性随温度的升高而呈增大趋势,并且晶须含量越高,材料的高温断裂韧性增幅越大。  相似文献   

18.
研究了纳米碳酸钙(CaCO_3)对氯化聚乙烯(CPE)/丙烯酸树脂(ACR)/聚氯乙烯(PVC)共混体系力学性能的影响,并通过动态机械热分析(DMA)和扫描电子显微镜(SEM)对共混体系的力学松弛行为、纳米CaCO_3在CPE/ACR/PVC共混体系中的分散状态及共混体系的断面形貌特征进行了表征。结果表明,纳米CaCO_3能够显著提高CPE/ACR/PVC共混体系的冲击性能,而不降低共混体系的强度。加入纳米CaCO_3后,共混体系的低温损耗(tanδ)峰强度显著增大,并且与冲击强度的变化具有很好的对应性。SEM观察发现,8 phr纳米CaCO_3可在CPE/ACR/PVC基体中形成纳米尺度的均匀分散,加入过多纳米CaCO_3则会出现明显的团聚。  相似文献   

19.
聚醚砜/环氧树脂复合体系的研究   总被引:21,自引:0,他引:21  
研究了聚醚砜(PES)/环氧树脂复合体系的微面结构和热-力学性能,分析了PES在环氧树脂基体中的增韧机理,PES/环氧树脂复合体系为两相结构,分散相PES呈不规则的变形颗粒分散在环氧树脂中,加入一定量PES可较大幅度地提高环氧树脂的韧性,而不降低环氧树脂的模量和耐热性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号