首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
青藏高原北部地区地震基本活动状态定量评价   总被引:3,自引:1,他引:2       下载免费PDF全文
基于区域构造背景、应力场状态及动力学环境等,将青藏高原北部地区划分为4个相对独立的统计单元,即祁连山地震带、甘东南地区、柴达木一共和地块及库玛地震带.通过地震频度和b值拟合确定了各个地区不同下限震级的地震目录完整性起始时间;确定了各构造单元中强以上地震活跃与平静交替活动的特征;定量计算了在平均状态中强以上地震活动特征参数及平静阶段与活跃阶段地震活动特征参数;分别获得了各个区域在平均、活跃与平静状态下的小震活动状态参数.  相似文献   

2.
青藏高原东北隅地区位于青藏高原、鄂尔多斯和阿拉善三大块体交汇部位,发育一组以逆走滑活动为主的弧形断裂系,其新活动性强,历史及现代强震频发,是探讨现代中小地震密集区与历史强震关联性的理想地区,也是检验和发展小震密集区值方法及其适用条件的有利地区。本文采用甘肃省地震局对该区1970年以来1~5级地震仪器监测目录,利用网格点密集值方法进行计算分析,共划分出21个地震密集区。通过分析每个地震密集区内小震活动的时间分布特征及前人对历史地震和活动构造的研究结果,综合判断地震密集区与历史强震之间的对应关系,归纳总结不同震级历史强震密集区的持续时间,给出运用网格点密集值方法校核青藏高原东北隅历史地震的限定条件。研究结果表明:青藏高原东北隅弧形构造区大约66.7%的密集区对应历史强震,两者之间有较密切的关联性;且地震震级越大密集区持续时间越长,两者之间的拟合关系为:T=4.38×10~(-7)×M~(10.91)。  相似文献   

3.
新疆天山南部构造区不同时段小地震目录完整性分析   总被引:1,自引:0,他引:1  
依据天山地区地质构造、运动强度和历史地震活动的差异性,将南部天山地区划分为南天山东段和南天山西段两个构造区.考虑到新疆台网建设的区域差异性和时间的阶段性,在对两个构造区不同震级下限地震频度时间特征分析的基础上,研究了各构造区不同时段的G-R关系和震级分布特征,并运用Z检验方法对各区不同时段小地震目录差异的显著性进行了分析,进而评估了两个构造区1970年以来不同时段的小地震目录完整性,为区域地震活动性研究中地震目录的合理运用提供参考依据.  相似文献   

4.
陕西区域地震目录最小完整性震级研究   总被引:3,自引:0,他引:3  
本文根据陕西测震台网地震目录和地震观测报告等资料,利用基于G-R关系基础上的EMR法,对1970年以来陕西区域地震目录最小完整性震级Mc的时空展布进行了研究。结果表明:模拟观测阶段(1970—2001年9月),ML2.1级以上地震基本完整;在地震台站数字化阶段(2001年10月—2013年4月),最小完整性震级为ML1.6。从时间尺度上看,陕西地区的地震监测能力在逐步提高。同时还分析研究了陕西地区最小完整性震级的空间分布情况,结果表明陕西北部地区Mc无法计算(缺震),中部较南部偏低。  相似文献   

5.
以东北地震区为例,基于G-R关系的震级·频度分布原理,研究了东北地震区最小完整性震级MC的时间分布特征和各时段的空间分布特征,统计了研究区内的地震活动性参数,探讨了小震资料完整性分析对地震活动性参数和地震危险性计算结果的影响.研究表明,对区域小震资料进行完整性分析,可以在低水平地震活动地区获得较准确的地震活动性参数,更好地反映了该区未来的地震活动趋势.本文的研究方法和结论可供地震资料完整性分析和地震活动性分析时参考.  相似文献   

6.
以东北地震区为例,基于G-R关系的震级-频度分布原理,研究了东北地震区最小完整性震级MC的时间分布特征和各时段的空间分布特征,统计了研究区内的地震活动性参数,探讨了小震资料完整性分析对地震活动性参数和地震危险性计算结果的影响。研究表明:对区域小震资料进行完整性分析,可以在低地震活动地区获得较准确的地震活动性参数,更好地反映了该区未来的地震活动趋势。本文的研究方法和结论可供地震资料完整性分析和地震活动性分析时参考。  相似文献   

7.
统计分析历史地震数据和记录的区域地震活动而得到区域地震复发间隔及地震发生概率是地震危险性分析的关键环节,其结果的好坏强烈依赖于使用的地震目录数据的完整性.而现有的地震目录往往记录时间较短或不完备.因此如果能够用基于物理的数值模拟方法形成更长时间尺度的人工合成地震目录,并且模拟结果能够与变形、地震活动等观测数据吻合,这样的人工合成地震目录有助于我们进一步理解地震活动特点以及分析地震危险性.文章以青藏高原东北缘为例,建立区域的三维黏弹塑性有限元模型,模拟了区域断层系统的地震循环和地震序列的时空演化,获得了万年时间尺度的人工合成地震目录.在模型满足区域地球动力学背景的基础上,根据模拟的人工合成地震目录分析了青藏高原东北缘各断层上不同位置、不同震级的地震复发特征,以及长期平均的地震发生概率,为区域地震危险性评估提供参考,为基于物理的地震数值预报工作提供基础.  相似文献   

8.
本文对1970年以来西宁盆地及邻近区域的中小震目录运用分时段累计频度、b值曲线、时间窗滑移等方法,对其监测能力的逐年变化情况进行了分析研究,并给出了不同时段的最小完整震级和最小可能完整性震级随时间变化的曲线.结果表明,本研究区域的地震监测能力逐年提高,由最初的ML2.3提升到目前的ML1.5.同时表明,在数次周边1000 km范围内的7级以上大震前,本区域的ML2~3明显增多,这一现象表明西宁盆地及邻近区域的小震活动特征具有一定的前兆指示意义.空间b值表明:西宁盆地内部一直处于较高b值的状态,而其外围尤其是北部区域处于低b值状态,值得持续关注.  相似文献   

9.
王辉  曹建玲  田勤俭 《地震》2021,41(2):14-28
新疆于田地区位于青藏高原与塔里木盆地相交会的地方,强震频发.2008年以来,该地区陆续发生的4次M6以上强震都位于阿尔金断裂带南分支的龙木错 郭扎错断裂带附近.这些地震的发生为研究于田地区中强震活动的空间分布及其之间的相互作用及提供了很好的实例.首先,利用小震目录对区域地震活动进行分析,给出了地震活动性参数b值的空间分...  相似文献   

10.
根据重庆台网建设的时间阶段性,在对不同震级下限地震频度时间特征分析的基础上,研究了重庆地区不同时段的G-R关系和震级分布特征,并运用z检验方法对不同时段地震目录差异的显著性进行了分析,进而评估了重庆地区1970年以来不同时段的地震目录完整性,为区域地震活动性研究中地震目录的合理运用提供参考依据。  相似文献   

11.
华北4次中、强地震前震源区及其附近应力场的变化   总被引:6,自引:1,他引:6       下载免费PDF全文
使用小震机制解资料 ,分析了 1975年海城 7 3级和 1976年唐山 7 8级强震及 1983年菏泽 5 9级和 1995年苍山 5 2级中强震前 ,震源区及其周围不同构造部位应力场的时、空变化 ,证实震前震源区附近应力场曾有某些异常改变 ,如唐山强震前震源区周围出现长达 4a多的小震机制解主应力轴一致性取向的现象 ,菏泽地震前小震机制解P轴“集中—转向” ,苍山地震前P轴偏转且一致性增强。同时还发现 ,唐山地震前应力场异常变化开始时间可能早于 1972年 ;震源区内的陡河台与源外区的昌黎台小震综合机制解反映出震前的受力差异 ;震源断层附近不同应力区内震源机制解和地震活动有时空动态差异。这些现象一定程度上提供了不同构造条件和应力背景下 ,中、强震前震源区不同构造部位力学状态的改变或地震孕育过程的信息 ,对研究不同地震的孕震过程及差异有一定意义。  相似文献   

12.
文中根据南北地震带中段及附近区域1973年以来86次5.0级以上的地震序列统计结果,对地震序列类型和空间分布进行分析,结果表明:1)研究区域内的地震序列以主余型为主(51%),多震型次之(29%),孤立型最少(20%);同一序列类型中,随着地震震级增大,主余型地震所占的比例增加,多震型、孤立型逐渐减少,7.0级以上地震以主余型为主,无孤立型地震;对于不同破裂类型,逆冲型地震中主余型最多,多震型地震更可能为走滑和正断性质的地震。2)主余型和多震型地震序列的主震与最大余震震级的线性关系相对较好;绝大多数地震的最大余震多发生在震后20d内,主余型最大余震集中在震后3d内发生,多震型地震中次大地震集中在震后12d内发生,孤立型地震的最大余震多发生在地震当天。3)地震序列空间分布显示,主余型地震分布相对较广,多震型地震主要集中在川西巴塘—理塘、川东马边—昭通一带、川北松潘和滇西北云龙、姚安、龙陵及附近区域,甘孜-玉树断裂带、鲜水河断裂带NW段及四川盆地等地更易发生孤立型地震。4)地震序列类型的空间分布可能与本区域的地质构造和历史地震活动存在一定的关系。  相似文献   

13.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

14.
戴维乐  沈业龙 《地震》1993,(5):1-10
本文用分形理论的信息维方法研究了大华北地区1976年以来十次中强地震区域地震时间分布信息维在主震前后随时间的变化。结果表明信息维的变化反映了地震时间分布结构自组织特征,在震前一、二年内无标度区及其上、下限值出现明显的下降异常变化,无标度区跨度由1个数量级变宽为3个数量级,震后恢复到一个数量级。震前无标度区跨度越宽,表明地震时间分布自相似结构自组织程度越高,大华北地区十次中强震无论其所在地区、震源深度、地震序列类型、发震构造不同、震前信息维都显示了明显的下降过程,并且临震前降到最低值,震后回升。信息维下降异常时间与主震震级无关,但信息维下降的最低值与主震震级有关。  相似文献   

15.
Northwest Guangxi is located in the Youjiang fold belt and the Hunan-Guangxi fold belt of secondary structure unit of South China fold system. The South China fold was miogeosyncline in the early Paleozoic, the Caledonian fold returned and transformed into the standard platform, and the Indosinian movement ended the Marine sedimentary history, which laid the basic structural framework of this area. Since the neotectonic period, large areas have been uplifted intermittently in the region and Quaternary denudation and planation planes and some faulted basins have been developed. Affected by the strong uplift of Yunnan-Guizhou plateau, the topography of the region subsides from northwest to southeast, with strong terrain cutting and deep valley incision. Paleozoic carbonate rocks and Mesozoic clastic rocks are mainly exposed on the earth's surface, and its geomorphology is dominated by corrosion and erosion landforms. The dating results show that most of the structures in northwest Guangxi are middle Pleistocene active faults, and the movement mode is mainly stick-slip. According to the seismogeological research results of the eastern part of the Chinese mainland, the active faults of the middle Pleistocene have the structural conditions for generating earthquakes of about magnitude 6. In the northwest Guangxi, the crustal dynamic environment and geological structure are closely related to Sichuan and Yunnan regions. Under the situation that magnitude 6 earthquakes occurred successively in Sichuan and Yunnan region and magnitude 7 earthquakes are poised to happen, the risk of moderately strong earthquakes in the northwest Guangxi region cannot be ignored. Based on the analysis of deep structure and geophysical field characteristics, it is concluded that the Tian'e-Nandan-Huanjiang area in the northwestern Guangxi is not only the area with strong variation of the Moho surface isobath, but also the ML3.0 seismic gap since September 2015, and the abnormal low b value area along the main fault. Regions with these deep structural features often have the conditions for moderately strong earthquakes. The paper systematically analyzes the spatial and temporal distribution features and mechanism of regional gravitational field and horizontal crust movement and further studies and discusses the changes of regional gravitational field, crustal horizontal deformation and interaction between geologic structure and seismic activity based on 2014-2018 mobile gravity measurements and 2015-2017 GPS observation data in the northwestern Guangxi. The results show that:1)On July 15, 2017, a MS4.0 earthquake in Nandan happened near the center of four quadrants of changes of gravity difference, and the center of abnormal area is located at the intersection of the Mulun-Donglang-Luolou Fault, the Hechi-Nandan Fault and the Hechi-Yizhou Fault. The dynamic graph of differential scale gravitational field reflects the gravity changes at the epicenter before and after the Nandan earthquake, which is a process of system evolution of "local gravity anomaly to abnormal four-quadrant distribution features → to earthquake occurring at the turning point of gravity gradient zone and the zero line to backward recovery variation after earthquake". Meanwhile, according to the interpretation of focal mechanism of the Nandan earthquake, seismogram and analysis of seismic survey results, the paper thinks that the four-quadrant distribution of positive and negative gravity, which is consistent with the effect of strike-slip type seismogenic fault before Nandan earthquake, demonstrates the existence of dextral strike-slip faulting; 2)The pattern of spatial distribution of gravitational field change in northwestern Guangxi is closely related to active fault. The isoline of cumulative gravity generally distributes along Nandan-Hechi Fault and Hechi-Yizhou Fault. The gravity on both sides of the fault zone is different greatly, and gradient zone has influences on a broad area; the spatial distribution of deformation field is generally featured by horizontal nonuniformity. Tian'e-Nandan-Huanjiang area is located at the high gradient zone of gravity changes and the horizontal deformation surface compressional transition zone, as well as near the intersection of Hechi-Yizhou Fault, Hechi-Nandan Fault and Du'an-Mashan Fault; 3)The geometric shape of gravitational field in northwestern Guangxi corresponds to the spatial distribution of horizontal crustal movement, which proves the exchange and dynamic action of material and energy in the region that cause the change and structural deformation of fault materials and the corresponding gravity change on earth's surface. The recent analysis of abnormal crustal deformation in northwestern Guangxi shows that Tian'e-Nandan-Huanjiang is a gradient zone of abnormal gravity change and also a horizontal deformation surface compressional transition zone. It locates at the section of significant change of Moho isobaths, the seismicity gap formed by ML3.0 earthquakes and the abnormal low b-value zone. According to comprehensive analysis, the region has the risk of moderately strong earthquake.  相似文献   

16.
由50余个测点的大地电磁测深资料,讨论了该区的地壳-上地幔电性横向变化特征。按照上地幔第一低阻层顶面埋深,将测区划分为四类地区:浅埋深(55-90公里)、中浅埋深(90-110公里)、中深埋深(110-160公里)和深埋深(160-250公里)。讨论了本区六次大震例的深部电性背景。指出了上地幔顶部的梯度带地区、地壳内电性横向变化剧烈的地区和地壳内存在局部特殊增厚的低阻层地区将可以作为潜在震源区的深部电性判据之一  相似文献   

17.
吴晓莉 《内陆地震》1996,10(2):130-133
应用断裂带地震复发条件概率作为潜在震源区空间概率函数来确定潜在震源区地震的年平均发生率,并运用断层分段的结果,依据其给定震级地震的平均复发间隔,计算出了未来50年地震复发的条件概率。并以南北天山地震带为例进行了计算。结果表明,该方法是可行的,计算结果是适宜的。  相似文献   

18.
龙陵-澜沧新生断裂带地震破裂分段与地震预测研究   总被引:5,自引:2,他引:5       下载免费PDF全文
龙陵 -澜沧新生断裂带的地震活动具频度高、强度大、周期短等特征 ,并以双震或震群型为主。断裂带由多条次级新生断层组成 ,呈斜列或共轭式展布 ,根据结构、规模、地震活动差异等因素把断裂带划分为 4个一级段、13个二级段 ,其中有 4个二级段又可划分出 8个三级段。历史上发生过大震、强震并有地震断层伴生的断层段为地震破裂单元 ;断裂带上晚第四纪有活动并有古地震事件 ,但无历史地震记载的地段为断层闭锁单元 ;次级断层之间的阶区或连接点为障碍体单元。从地震破裂特征分析 ,断裂带由破裂、闭锁、障碍体单元组成 ,根据地震、古地震、活断层、断层阶区的活动规律 ,断裂带可划分出 9个破裂单元、8个闭锁单元、10个障碍体单元。三者之间呈迁移、触发和转换能量的关系。根据这些关系和地震构造标志 ,对断裂带上未来可能发生大震、强震、中强震的地区分别作了预测。预测的危险区有 9个 ,其中大震区 1个 (永康 -永德地区 ) ,强震区 3个 (马站、石灰窑、酒房-勐混 ) ,中强震区 5个 (下顺江、里仁、大岗山、南明 -澜沧、勐遮  相似文献   

19.
对东南沿海1067年和1574年两次地震的分析   总被引:4,自引:1,他引:3       下载免费PDF全文
地震目录给出的 1067年广东潮汕地震的参数不能合理解释历史记载中该地震的震害分布。文中将这次地震与 1918年南澳大地震在相同地点的震害记载进行了对比,发现几乎相同,进而论证了这两次地震属发生在同一震源的特征地震事件的可能性,认为 1067年地震的震中很可能位于南澎列岛西侧,其震级可达 71 /4。鉴于目前对 1574年福建东北沿海 53 /4级地震事件有不同的认识,文中重新分析了该地震的破坏区与有感区的分布,并与 1906年厦门海外地震进行了比较。结果认为, 1574年地震的震中更有可能位于福州—莆田以东的海域,且震级可能达到 61 /4。文中还认为:史料中有关 1574年浙江庆元地震的记述所指的可能不是发生在当地的破坏性地震,而更可能就是同年发生在福州—莆田以东海域的那次地震。1067年和 1574年地震可能都发生在NE向的滨海断裂带上  相似文献   

20.
The distribution of earthquake rupture zone plays a very important role in determining location of epicenter and magnitude of historical earthquake. There is still argument about the seismogenic structure of the 1842 M7 Balikun earthquake and the 1914 M7 1/2 Balikun earthquake in the historical records in eastern Tienshan. Through field geological survey, we confirm that there exist 3 rupture zones in Eastern Tienshan. These rupture zones, Tazibulake rupture zone on the Jian Quanzi-Luo Baoquan Fault, north of Shanshan, Xiong Kuer rupture zone on the south Balikun Basin Fault and Yanchi rupture zone on the south Yiwu Basin Fault, are closely related to 2 historical earthquakes. Based on historical literature and current geological evidence analysis, we infer that Xiong Kuer rupture zone was produced by 1842 M7 earthquake and Yanchi rupture zone by 1914 M7 1/2 earthquake, while Tazibukale rupture zone may represent another unrecorded historical event. South Balikun Basin Fault disturbs Quaternary stratigraphy which has a 14C age of 3110±30 B.P in the south of Balikun County, ~100km to the east of Xiong Kuer rupture zone, therefore we can't preclude the possibility that Xiong Kuer rupture zone extends to the south of Balikun County. This region overlaps with the meizoseismal area based on the literature document, together with the fact that the impact of 1842 earthquake is no less than 1914 earthquake, we believe that the magnitude of 1842 earthquake is no less than that of the 1914 earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号