首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张群娇  魏耀斌 《数学杂志》2016,36(4):719-726
本文研究了扰动的复杂网络的有限时间同步问题. 利用终端滑模控制的方法, 设计了能保证网络同步的滑模面和控制器, 得到了两个不同的复杂网络之间达到有限时间同步的充分条件. 这些理论结果推广了复杂网络同步的一些已有结论.  相似文献   

2.
本文研究了扰动的复杂网络的有限时间同步问题.利用终端滑模控制的方法,设计了能保证网络同步的滑模面和控制器,得到了两个不同的复杂网络之间达到有限时间同步的充分条件.这些理论结果推广了复杂网络同步的一些已有结论.  相似文献   

3.
文章研究了基于非周期间歇性控制的具有多重权值和耦合时滞的复杂网络固定时间同步问题.通过构建具有多重权值的复杂网络模型,并基于固定时间稳定性引理和矩阵理论,给出了实现复杂网络固定时间同步的充分条件.此外,文章设计了固定时间非周期切换控制器,获得了实现复杂网络同步的时间上界的估计值.结论证明了实现网络同步的时间与网络的初始状态无关,最后数值模拟说明了理论结果的正确性和有效性.  相似文献   

4.
洪云飞 《应用数学》2019,32(1):242-252
基于定积分比例函数,研究了时变时滞复杂网络的自适应投影同步问题.本文讨论的比例函数投影同步,比例函数不仅是定积分,而且定积分的上下积分和时变时滞都是自适应的.数值仿真验证了这种方法的有效性.  相似文献   

5.
运用自适应控制方法,研究了分数阶复杂网络的同步.通过构造一种简单的Lyapuno函数,得到同步准则.最后通过数值例子表明所提出方法的有效性.  相似文献   

6.
本文主要研究了节点动力学为Caputo型的分数阶微分方程的复杂网络的同步,建立了判定分数阶网络的同步定理.数值例子验证了理论结果的有效性.  相似文献   

7.
复杂动态网络的有限时间同步   总被引:1,自引:0,他引:1  
陈姚  吕金虎 《系统科学与数学》2009,29(10):1419-1430
复杂网络无处不在,同步是自然界中广泛存在的一类非常重要的非线性现象.过去10年,人们对复杂网络的同步开展了系统而深入的研究,包括恒等同步、广义同步、簇同步以及部分同步等.上述大部分结果中对同步速度的刻画往往是渐进的,只有当时间趋于无穷的时候,网络才能实现同步,而对于网络能够在多长时间内可以实现同步却知之甚少.作者以几类典型的非线性耦合的复杂动态网络为例,深入探讨了复杂动态网络的有限时间同步的规律.具体而言,基于上述几类典型的复杂动态网络,证明了在某些合适的条件下,网络能够在有限时间内实现精确同步.此外,用一个典型的数值仿真实例验证了上述有限时间同步的准则.有限时间同步有效地避免了网络只有在无穷时刻才能实现同步的问题,对网络同步的实际工程应用具有基本的现实意义.  相似文献   

8.
主要考虑非对称耦合复杂网络的脉冲同步问题.通过构造Lyapunov泛函,设计合适的脉冲控制器,并利用时滞脉冲系统理论,给出了网络脉冲同步新的判别准则.数值模拟表明所得结果是正确的.  相似文献   

9.
多层复杂网络同步是网络科学研究的一个前沿方向,目前对多层复杂网络同步性的研究大多集中在无向多层复杂网络上,而更加贴近于实际的多层有向网络研究很少.首先根据主稳定方程(MSF)严格计算出M层层间单向耦合星形圆环状网络的超拉普拉斯矩阵的特征值谱,并得到反映M层层间单向耦合星形圆环状网络同步能力的重要指标,其次讨论了M层层间单向耦合星形圆环状网络在同步域为有界和无界的两种情况下同步能力与层数、节点数、层间耦合强度和层内耦合强度及中心节点耦合强度之间的关系.最后通过数值模拟给出了层间单向耦合星形圆环状网络同步能力的仿真图像,验证了理论结果的有效性.  相似文献   

10.
本文研究了带非线性信号连接的两个复杂网络间的同步问题,引入非线性耦合参数α来调节两个复杂网络的同步.若耦合参数不能保证网络达到外部同步,这里我们提出了一种自适应同步方式,通过此方式可以使两个复杂网络达到同步,最后通过简单的数值算例来阐述得到的理论结果,包括网络具有相同和不相同的拓扑结构两种情形.  相似文献   

11.
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The delays considered in this paper are assumed to vary in an interval, where the lower and upper bounds are known. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into several subintervals, by checking the variation of the derivative of a Lyapunov function in every subinterval, then the convexity of matrix function method and the free weighting matrix method are fully used in this paper. Some new delay-dependent synchronization stability criteria are derived in the form of linear matrix inequalities. Two numerical examples show that our method can lead to much less conservative results than those in the existing references.  相似文献   

12.
In this article, we consider a generalized complex dynamical network model with nonsymmetric coupling, and the dynamics of each node has a different time-varying delay. Criteria of exponential synchronization are derived in terms of linear matrix inequalities for the model by constructing suitable Lyapunov functionals. The obtained outcomes are different from those in the current literature, in which the complex dynamical networks are coupling symmetrically and delays are fixed constants. Moreover, the given sufficient conditions extend current available results and are verifiable. A numerical example is provided to illustrate the efficiency of the derived outcome.  相似文献   

13.
This paper considers delay dependent synchronizations of singular complex dynamical networks with time-varying delays. A modified Lyapunov-Krasovskii functional is used to derive a sufficient condition for synchronization in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.  相似文献   

14.
This paper studies the synchronization problem of complex dynamical networks with stochastic delay which switches stochastically among several forms of time-varying delays. Both the discrete and distributed delays are considered, as well as the Markovian jump parameters. The occurrence probability distribution of the stochastic delay is assumed to be known in prior. By utilizing the Lyapunov–Krasovskii stability theory and stochastic analysis techniques, some sufficient exponential synchronization criteria are obtained, which depend not only on the size of delays, but also on the occurrence probability distribution of the stochastic delay. Moreover, the main results are successfully extended to multi-agent systems with stochastic delay. Several numerical examples are given to illustrate the feasibility and effectiveness of the proposed methods.  相似文献   

15.
This paper investigates the generalized outer synchronization (GOS) between two non-dissipatively coupled complex dynamical networks (CDNs) with different time-varying coupling delays. Our drive-response networks also possess nonlinear inner coupling functions and time-varying outer coupling configuration matrices. Besides, in our network models, the nodes in the same network are nonidentical and the nodes in different networks have different state dimensions. Asymptotic generalized outer synchronization (AGOS) and exponential generalized outer synchronization (EGOS) are defined for our CDNs. Our main objective in this paper is to design AGOS and EGOS controllers for our drive-response networks via the open-plus-closed-loop control technique. Distinguished from most existing literatures, it is the partial intrinsic dynamics of each node in response network that is restricted by the QUAD condition, which is easy to be satisfied. Representative simulation examples are given to verify the effectiveness and feasibility of our GOS theoretical results in this paper.  相似文献   

16.
The synchronization problem for a class of complex dynamical networks with stochastic disturbances and probabilistic interval time-varying delays is investigated. Based on the stochastic analysis techniques and properties of the Kronecker product, some delay-dependent asymptotical synchronization stability criteria are derived in the form of linear matrix inequalities (LMIs). The solvability of derived conditions depends not only on the size of the delay, but also on the probability of Bernoulli stochastic variables. A numerical example is given to illustrate the feasibility and effectiveness of the proposed method.  相似文献   

17.
The paper investigates the synchronization and state estimation for singular complex dynamical networks with time-varying delays. Firstly, a modified Lyapunov–Krasovskii functional is constructed by employing the more general decomposition approach, the novel delay-dependent synchronization conditions are derived in terms of linear matrix inequalities, which can be easily solved by various convex optimization algorithms. Secondly, the state estimation problem is then studied for the same complex networks, where the purpose is to design a state estimator to estimate the network states through available output measurement, a delay-dependent asymptotically stability condition is established for the system of the estimation error. Some numerical examples are exploited to illustrate the effectiveness of the proposed synchronization and state estimation conditions.  相似文献   

18.
This paper is concerned with the passivity problem for a class of Markovian switching complex dynamic networks with multiple time-varying delays and stochastic perturbations. Some sufficient conditions are obtained to guarantee that the complex dynamic networks with multiple time-varying delays and stochastic perturbations under Markovian switching are passive in the sense of expectation. The appropriate stochastic Lyapunov–Krasovskii functional was constructed, and stochastic theory, linear matrix inequality technique and properties of Weiner process were employed to achieve the results. Finally, some simulation examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

19.
In this paper, a general model of an array of N linearly coupled delayed neural networks with Markovian jumping hybrid coupling is introduced. The hybrid coupling consists of constant coupling, discrete and distributed time-varying delay coupling. The complex dynamical network jumps from one mode to another according to a Markovian chain, where all the coupling configurations are also dependent on mode switching. Meanwhile, all the coupling terms are subjected to stochastic disturbances which are described in terms of a Brownian motion. By adaptive approach, some sufficient criteria have been derived to ensure the synchronization in an array of jump neural networks with mixed delays and hybrid coupling in mean square. Surprisingly, it is found that complex networks with two different structure can also be synchronized according to known probability matrix. Finally, an example illustrated by switching between small-world networks and nearest-neighbor networks is given to show the effectiveness of the proposed criteria.  相似文献   

20.
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号