共查询到20条相似文献,搜索用时 53 毫秒
1.
321和310奥氏体不锈钢分别采用A132和A402焊条焊接,焊后依据GB/T4334-2008《金属和合金的腐蚀-不锈钢晶间腐蚀试验方法》对其焊接接头的晶间腐蚀情况进行了对比分析.研究发现,由于Ti元素的存在,321比310更耐晶间腐蚀.A132焊条中含有Nb元素,使用它焊接会向焊缝金属中过渡合金元素,在一定程度上也可以起到抑制晶间腐蚀的作用.由于焊接过程中受到敏化温度影响,焊缝的耐晶间腐蚀性要比母材差. 相似文献
2.
采用W-Re合金搅拌工具对4 mm厚409L铁素体不锈钢板进行搅拌摩擦焊(FSW),利用光学显微镜、扫描电镜、电子万能试验机和显微硬度仪等研究了焊接接头的焊缝形貌、微观组织和力学性能。结果表明:采用转速为1000 r/min,焊速为80 mm/min的工艺参数可以获得力学性能良好、无缺陷的409L铁素体不锈钢搅拌摩擦焊接接头。接头焊核区组织为高度细化的等轴铁素体晶粒,平均晶粒尺寸为17.3μm,并形成了大量的小角度晶界,是母材的3.66倍。焊缝的显微硬度分布呈“抛物线”形态,焊核区的硬度最高,为143 HV0.2,焊缝各区域的力学性能均高于母材。焊接接头的拉伸断裂在母材处,断裂形式为韧性断裂。 相似文献
3.
关于铁素体不锈钢焊接晶间腐蚀的问题,目前尚缺少统一的看法和系统的资料。本文对铁素体不锈用焊接晶间腐蚀的现象;铁素体不锈钢的敏化;铁素体不锈钢晶间腐蚀的有关理论;钢的化学成分和腐蚀介质的影响;以及对焊接时的注意事项等问题进行了深入论述。 相似文献
4.
采用脉冲钨极氩弧焊工艺,对含锡超纯铁素体不锈钢母材和焊缝的腐蚀性能进行研究.结果表明,焊缝能够获得与母材相当的耐腐蚀性能.含锡超纯铁素体不锈钢通过添加双稳定元素Ti和Nb,形成第二相Ti(C,N)和Nb(C,N),即使在焊接热循环的作用下,未熔解的Ti(C,N)和Nb(C,N)仍然起到细化铁素体晶粒和第二相强化的作用;添加微合金元素Sn,使得冷轧态的母材和焊接接头的耐腐蚀性能均得以提高,并且在焊接接头组织中的锡与Ti(C,N)和Nb(C,N)在晶界形成偏聚的竞争机制,从而得到耐腐蚀性能与母材相当的焊缝组织. 相似文献
5.
铁素体不锈钢的晶间腐蚀性能研究 总被引:1,自引:0,他引:1
分别采用Cu-CuSO4-16% H2SO4沸腾试验和电化学再活化方法研究了八种400系列铁素体不锈钢的晶间腐蚀性能.结果表明:C含量及稳定化元素是影响铁素体不锈钢晶间腐蚀性能的关键因素;电化学测量方法评价铁素体不锈钢的晶间腐蚀性能时易受晶粒再活化的影响,可结合电镜观察表面提高测量的准确性. 相似文献
6.
7.
焊接工艺对SUS444铁素体不锈钢焊接接头组织和力学性能的影响 总被引:1,自引:0,他引:1
设计了三种焊接工艺焊接SUS444铁素体不锈钢,通过金相、弯曲、拉伸和冲击等方法研究了其焊接接头的微观组织和力学性能.结果表明:三种焊接工艺都能得到抗弯性能和抗拉性能较好的焊接接头,采用线能量小于10k.J/cm两道次焊接的热影响区最窄,晶粒尺寸最小,常温冲击功最高,冲击断口为韧窝断口;填充奥氏体不锈钢焊丝可以保证焊缝具有足够的韧性,不填焊丝焊缝冲击功只有10J,呈现脆性断裂形貌. 相似文献
8.
9.
厂内机动车排气管409L铁素体不锈钢激光焊接 总被引:1,自引:0,他引:1
采用钨极氩弧焊(TIG)预热+CO<,2>激光焊在管道生产线上对1.5 mm厚的409L铁素体不锈钢进行焊接,并对焊接接头进行了显微组织分析.结果表明:激光焊接铁素体不锈钢管具有接头热影响区窄、晶粒长大程度小、冷加工成形性能好的优点.可以很好地满足厂内机动车排气管生产后续的所有冷加工工艺要求. 相似文献
10.
11.
Additions of nickel to ferritic steels containing 25–28% Cr and 2–4% Mo increased the impact toguhness especially when more than 2% Ni was present. The effect of nickel content increased up to 4% Ni, the largest addition studied. Steels stabilized with niobium had lower transition temperatures then did corresponding steels stablizied with titanium. Steels containing 4% Ni required annealing at 1050 C to avoid intermetalic compounds. It was also noted that nickel reduced the upper shelf energy in the Charpy impact test and eliminated a sharp transition from ductile to brittle behaviour. No definite effect of nickel on pitting potential was pound but steels in the series 25Cr-3.5 Mo-Ni-Ti consistenly had more noble pitting potentials and greater resistance to crevice corrosion than the 28 Cr-2Mo-Ni-Ti steels. Nickel contents of 1 or 2% tended to improve crevice corrosion resistance while larger nickel contents were somewhat ditrimental. Nickel strongly reduced critical current densities for passivity both in l N H2SO4 and in l N HCL and yielded corresponding increases in resistance to corrosion by these acids. Although 1% Ni or more caused the annealed steels to be susceptible to stress corrosion cracking in MgCl2 boiling at 140 C, while the as-Welded steels containing 4% Ni did not crack in boiling 25% Nacl at pH 1. 相似文献
12.
This paper represents a follow-up to the first part of the work on new stainless steels for sea-water service. Four laboratory ELI (Extra Low Interstitial) ferritic stainless steels (types 25 Cr-4 Ni-4 Mo), two commercial ELI ferritic stainless steels (types 25 Cr-4 Ni-4 Mo? Ti and 26 Cr-2.5 Ni-3 Mo? Ti) and two highly alloyed austenitic stainless steels (types 20 Cr-25 Ni-4.5 Mo? Cu and 20 Cr-18 Ni-6 Mo? N) have been investigated. With a view to establish the performance of these new alloys in chloride containing environments, systematic electrochemical and laboratory exposure tests have been carried out to define how various factors affect its susceptibility to intergranular, pitting, crevice and stress corrosion. Tension tests were also performed. From the comparison of the localized corrosion resistance and mechanical properties it has been concluded that the laboratory Ti, Ti + Nb or Nb stabilized ELI ferritic stainless steels and the commercial type 25 Cr-4 Ni-4 Mo? Ti of analogous composition could be a valuable alternative to the more expensive highly alloyed stainless steel type 20 Cr-25 Ni-4.5 Mo? Cu which has been especially developed and already used for industrial sea-water applications. 相似文献
13.
采用热/力模拟实验方法研究了409L铁素体不锈钢(409LFSS)在950~1150℃、应变速率为0.05~2.5 s-1条件下的热变形及组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明,409L铁素体不锈钢的表观应力指数及热变形表观激活能分别为4.45、262 kJ/mol;其热变形方程为ε=5.347×1011[sinh(α·σp)]4.45exp(-262000/RT);该钢的铁素体软化机制与Z参数有关,且随着Z值从2.09×108增加到3.92×1011,热变形峰值应力相应从13.73 MPa增加到65.08 MPa. 相似文献
14.
Takehiko Watanabe Masataka ShirokiAtsushi Yanagisawa Tomohiro Sasaki 《Journal of Materials Processing Technology》2010,210(12):1646-1651
Authors investigated the effect of ultrasonic vibration on the solidification microstructure and mechanical properties of the weld metal of ferritic stainless steel by introducing directly ultrasonic vibration into the weld molten pool using ultrasonically vibrating filler metal. The main results obtained in this study are as follow. 相似文献
15.
Luis Henrique Guilherme Carlos Alberto Della Rovere Sebastião Elias Kuri Marcelo Falção de Oliveira 《Welding International》2016,30(4):268-276
The AISI 444 stainless steel (SS) has become an option to substitute the AISI 316L SS because of its low cost and satisfactory corrosion resistance. However, the use of AISI 444 alloy tubes in heat exchangers causes the welding of a dissimilar joint. The aim of this study was evaluate the corrosion resistance of the tube-to-tubesheet welded by a TIG process composed of AISI 316L and AISI 444. Preparation of samples was executed through replication of tube-to-tubesheet joints. In order to test the corrosion resistance of the welded joint, the following tests were applied: sensitisation, mass loss from room temperature up to 90 °C and electrochemical corrosion tests in 0.5 mol/L HCl and 0.5 mol/L H2SO4 electrolytes. The results have shown that the dissimilar joint suffers galvanic corrosion with increased degradation of the heat-affected zone of the AISI 444 tube. Nevertheless, the mechanisms of localised corrosion (pit and intergranular) were more active in the AISI 316L alloy. It is concluded that the dissimilar joint showed better corrosion resistance than the welded joint composed solely of AISI 316L at temperatures up to 70 °C, as the conditions observed in this work. 相似文献
16.
Intergranular precipitation and corrosion in weld of low Cr ferritic stainless steel 总被引:1,自引:0,他引:1
In the present research, intergranular precipitation and corrosion in the weld of low Cr ferritic stainless steel was investigated. Free-exposure and double loop electrochemical potentiokinetic reactivation corrosion test results revealed that IGC occurred in both the weld metal and heat-affected zone of the welds aged for more than 1 h at 500 °C. Intergranular Cr segregation was observed around the TiC precipitation of the weld in which IGC developed during the corrosion tests. This observation is subsequently discussed in the experimental results. 相似文献
17.
Md. Abu Mowazzem Hossain Md. Tariqul Hasan Sung-Tae Hong Michael Miles Hoon-Hwe Cho Heung Nam Han 《Metals and Materials International》2013,19(6):1243-1250
Spot joints of ferritic 409L stainless steel are successfully fabricated by friction stir spot welding (FSSW) using a convex shoulder tool. The welding process, microstructure and failure of the FSSW joint are investigated experimentally. During the FSSW process, the Z-force history shows significant variations depending on the contact phenomena between the tool and the joined sheets, while the Z-torque history shows a rather steady increase without pronounced changes in the trend until the initiation of dwelling. Electron back-scatter diffraction suggests that both continuous dynamic recrystallization and recovery occurred in the stir zone during the FSSW process. Observation of the FSSW joint that failed under the given lap shear load shows that the cracks, which are the result of the interfaces between the upper and lower sheets, propagated into the weld along the interfacial surfaces, after which a necking/shear failure occurred. Finally, the rupture of the joint, which was initiated by the necking/shear failure, propagated along the circumference of the weld. 相似文献
18.
19.
D. Sinigaglia G. Rondelli G. Taccani B. Vicentini G. Dallaspezia L. Galelli B. Bazzoni 《工业材料与腐蚀》1980,31(11):851-860
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti. 相似文献
20.
The corrosion behaviour, toughness and weldability of duplex stainless steel can be improved by controlling the composition and austenite: ferrite ratio in the base metal and in the weld deposits. Addition of nitrogen is beneficial to ductility and restistance to pitting corrosion; the latter is also improved by increased chromium contents which stabilize the passive film. This effect is further enhanced by the addition of molybdenum which, however, should not exceed sigma phase at high temperatures. Copper in amounts up to 1.5% improves the resistance to marine environments; however, a certain upper limit should not be exceeded because of adverse effects on hot ductility. In view of the function of nickel concerning the austenite: ferrite ratio (which should be about 50:50) the nickel content should be appropriately selected and should be higher in the filter metal. 相似文献