首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究Al2O3含量对Al2O3/Cu复合材料热变形行为的影响,采用内氧化法制备了3种Al2O3含量(0.28、0.66和1.13 mass%)的Al2O3/Cu复合材料,通过热模拟实验对其热变形行为进行了研究。结果表明:在823、923和1223 K时,随着Al2O3/Cu复合材料中Al2O3含量的增加,复合材料的峰值应力逐渐增大;显微组织观察发现,由于1.13 Al2O3/Cu复合材料内动态软化积累程度最大,导致其在1023和1123 K下出现了峰值应力下降现象。经热挤压后,在热变形过程中Al2O3/Cu复合材料的软化效果以动态回复为主。同时,发现0.28 Al2O3/Cu和0.66 Al  相似文献   

2.
Al3Ti和Al2O3增强铝基复合材料的XD合成   总被引:2,自引:0,他引:2  
《中国有色金属学报》2001,11(Z1):147-149
通过XD(Exothermic Dispersion)法原位反应生成Al2O3与Al3Ti复合增强的铝基复合材料,结果表明Al/TiO2经充分混合、挤压成坯后,在真空炉中以一定的升温速率加热至1 073  相似文献   

3.
Al2O3/Al基颗粒增强复合材料的凝固组织   总被引:1,自引:0,他引:1  
本文利用旋涡制造颗粒增强铝基复合材料,探讨了增强颗粒的添加对基体凝固组织的影响,对比了添加SiO  相似文献   

4.
采用粉末冶金法+热压工艺制备了不同Al2O3颗粒直径的1 vol%Al2O3/Cu基复合材料,使用光学显微镜和扫描电镜(SEM)观察了复合材料的显微组织,利用电子拉伸试验机测试了复合材料的力学性能。基于弹/塑性理论推导出了复合材料中颗粒周边的弹性区宽度的表达式。结果表明:Al2O3颗粒直径对Al2O3/Cu基复合材料强度及基体晶粒尺寸有着较大的影响;Al2O3颗粒直径越大,Al2O3/Cu基复合材料的抗拉强度、屈服强度越小;当Al2O3颗粒直径为5μm时,Al2O3/Cu基复合材料的抗拉强度和屈服强度分别为207和90 MPa,是铜试样的95.8%和95.7%。  相似文献   

5.
6.
采用真空热压烧结方法制备Al2O3/Ti(C,N)-Ni-Ti陶瓷基复合材料,采用X射线衍射与扫描电镜分析材料的物相组成和显微结构,研究烧结工艺对材料物相组成、显微结构和力学性能的影响。结果表明:Ni和Ti的添加显著提高复合材料的强度和韧性;温度小于1 600℃时,复合材料的力学性能随热压温度的升高而升高;温度高于1 600℃时,温度升高及保温时间延长不仅会导致Al2O3晶粒的异常长大和Ti(C,N)的分解,而且会使Ni发生聚集现象,复合材料的力学性能下降;当烧结温度为1 600℃、保温时间为30 min时,制备的Al2O3/Ti(C,N)-Ni-Ti陶瓷复合材料的力学性能最佳,其相对密度达到99.4%,抗弯强度为820 MPa,断裂韧性达到9.3 MPa.m1/2。  相似文献   

7.
为了提高Al2O3超微粉在水介质中的分散稳定性,先采用硅烷偶联剂KH570对Al2O3进行表面改性,再对Al2O3粒子锚固偶氮引发剂偶氮二异丁基脒盐酸盐(AIBA),进而引发丙烯酰胺(AM)单体聚合而制备聚丙烯酰胺(PAM)/Al2O3复合粒子。利用XPS、FT-IR、激光粒度仪、微电泳仪、分光光度计、SEM及XRD等对Al2O3复合粒子结构及分散性能等进行表征。结果表明:在40℃下加入水溶性偶氮引发剂,可以得到在水介质中分散稳定性良好,以聚丙烯酰胺为壳,以Al2O3为核的复合磨粒。与未改性的Al2O3超微粉相比,经AM接枝聚合改性后的颗粒表面团聚现象得到改善,颗粒的D50减小;接枝改性后Al2O3的等电点IEP发生迁移,在pH值为9时颗粒表面Zeta电位绝对值达到最大。  相似文献   

8.
用传统日用瓷粘接料浆对99%的Al2O3陶瓷进行素坯连接,成功实现复杂空间构型陶瓷骨架的构建。通过SEM表征了陶瓷骨架粘接界面的微观形貌,结果发现,中间层厚度约250μm,骨架力学性能良好。应用熔体压力浸渗工艺将熔融铝合金与所构建的陶瓷骨架穿插复合,复合后的材料显示出轻质高强的特性。  相似文献   

9.
旷成秀  刘康强  李凤仪 《贵金属》2013,34(1):17-20,24
应用共浸渍法和分层浸渍法制得了Pt-Rh-Pd/Al2O3催化剂,程序升温脱附(TPD)和X射线衍射(XRD)对催化剂的催化活性进行了表征。结果表明,共浸渍法制得的Pt-Rh-Pd/Al2O3催化剂的催化性能优于分层浸渍法制得的Pt-Rh-Pd/Al2O3催化剂。这可能与Pt-Pd-Rh/Al2O3催化剂的催化过程符合Langmuir-Hinshelwood历程有关。  相似文献   

10.
11.
对真空热压烧结的Al2O3/Cu-WC复合材料进行了载流磨损试验,并利用扫描电镜对复合材料的磨损表面及纵切面的微观形貌进行了观察和分析。结果表明,磨损率和摩擦因数随加载电流的增加而增大;磨损表面有WC颗粒的剥落和重新结晶的Al2O3颗粒,加剧了磨粒磨损,其主要磨损形式为粘着磨损、磨粒磨损、电烧蚀磨损。  相似文献   

12.
肖长源  陈兵  张敏敏  吉华  李达 《焊接学报》2016,37(12):66-70
铝基复合材料因其优异的物理性能及机械性能已得到广泛应用.文中通过在2219-O铝合金内部添加不同比例的RE/Al2O3纳米粉末,利用搅拌摩擦加工技术,制备铝基复合材料.并对搅拌区进行金相、拉伸、硬度、SEM,EDS和XRD等试验.结果表明,搅拌区金属在搅拌头强烈的搅拌摩擦作用下发生显著的塑性变形和连续动态再结晶,形成细小的等轴晶粒,并具有明显的洋葱环组织.复合材料的抗拉强度为母材的163%、屈服强度为母材的195%,同时硬度也明显增加.但是不同稀土比例对金属基复合材料的组织形貌和力学性能影响不大.大块复合材料制备过程粉末添加及隧道型缺陷的控制是关键.  相似文献   

13.
高强度高电导率Cu-Al2O3复合材料的制备   总被引:5,自引:0,他引:5  
《热加工工艺》2002,(1):39-40
综述了近年来高强度高电导率Cu-Al2O3复合材料制备方法的研究进展.对内氧化工艺进行了详细阐述,并对今后Cu-Al2O3复合材料制备方法作了展望.  相似文献   

14.
以细雾化铝粉和TiB2颗粒为原料,通过粉末冶金和热轧制制备微米TiB2和纳米Al2O3颗粒增强铝基复合材料。室温时,由于TiB2和Al2O3的综合强化作用,Al2O3/TiB2/Al复合材料的屈服强度和抗拉强度分别为258.7 MPa和279.3 MPa,测试温度升至350℃时,TiB2颗粒的增强效果显著减弱,原位纳米Al2O3颗粒与位错的交互作用使得复合材料的屈服强度和抗拉强度达到98.2MPa和122.5 MPa。经350℃退火1000 h后,由于纳米Al2O3对晶界的钉扎作用抑制晶粒长大,强度和硬度未发生显著的降低。  相似文献   

15.
16.
通过挤压铸造的方法制备出了不同Cu含量的系列Al2O3·SiO2sf/Al-Cu复合材料.摩擦磨损实验结果表明,Cu的加入降低了复合材料的摩擦系数;且随着Cu含量的增加,Al2O3·SiO2sf/Al-Cu复合材料的耐磨性能先增加后降低.在磨损过程中,Al2O3·SiO2纤维增强相牢固地镶嵌在基体里并形成支架,起到保护基体而提高复合材料耐磨性能的作用.Al2O3·SiO2sf/Al复合材料的磨损机制主要为黏着磨损,Al2O3·SiO2afAl-Cu复合材料的磨损机制为黏着磨损为主并伴有磨粒磨损.  相似文献   

17.
在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为229.17 kJ/mol。根据材料动态模型,计算并建立Al2O3/Cu-WC复合材料的热加工图,据此确定热变形流变失稳区及热变形过程的最佳工艺参数,其热加工温度为650-750℃,应变速率为0.1-1 s 1。  相似文献   

18.
19.
通过粉末冶金结合热挤压工艺制备出Al2O3颗粒增强Cu-Cr-Zr基复合材料,研究了时效处理工艺对该复合材料干摩擦磨损行为的影响.结果表明,经过480℃×1h时效处理后,在复合材料的基体中形成细小弥散的共格沉淀相,使其硬度提高并得到良好的导电性能.加入Al2O3颗粒显著提高了复合材料的耐磨性和摩擦的平稳性.磨损机理分析表明,恰当的时效处理工艺使复合材料基体的力学性能提高,摩擦过程中亚表层变形程度显著降低,避免了严重粘着转移的发生,改善了复合材料的耐磨性能.  相似文献   

20.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号