首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   

2.
Multichannel seismic reflection profiles across the Sunda Trench slope off central Sumatra reveal details of subduction zone structure. Normal faults formed on the outer ridge of the trench offset deep strate and the oceanic crust, but die out upsection under the trench sediments. At the base of the inner trench slope, shallow reflectors are tilted seaward, while deeper reflectors dip landward parallel to the underlying oceanic crustal reflector. Intermediate depth reflectors can be traced landward through a seaward-dipping monocline. We interpret this fold as the shallow expression of a landward-dipping thrust fault at depth. Landward of this flexure, relatively undeformed strata have been stripped off the oceanic plate, uplifted 700 meters, and accreted to the base of the slope. The oceanic crust is not involved in the deformation at the toe of the slope, and it can be observed dipping landward about 25 km under the toe of the accretionary prism.The middle portion of the trench slope is underlain by deformed accreted strata. Shallow reflectors define anticlinal structures, but coherent deep reflectors are lacking. Reflectors 45 to 55 km landward of the base of the slope dip 4°-5° landward beneath a steep slope, suggesting structural imbrication.A significant sediment apron is absent from the trench slope. Instead, slope basins are developed in 375–1500 m water depths, with an especially large one at about 1500 m water depth that is filled with more than 1.1 seconds of relatively undeformed sediments. The seaward flank of the basin has recently been uplifted, as indicated by shallow landward-dipping reflectors. Earlier periods of uplift also appear to have coincided with sedimentation in this basin, as indicated by numerous angular unconformities in the basin strata.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

3.
A seismic reflection survey was conducted in the proximal shelf off Atlit, western Mt. Carmel, Israel, to clarify the regional neotectonic regime. The Atlit promontory is built of late Pleistocene eolianite ridge, truncated by faults at its northern extension. The seismic survey encountered two series of faults, trending N—S and NW—SE, offsetting the upper strata by 1–5 m. Faulted escarpments of the N—S faults are barely covered by sediments, suggesting that they are tectonically active. The escarpments of the NW—SE faults are rarely exposed, suggesting their late Pleistocene age. A submerged undamaged Neolithic well near a major NW trending fault indicates that the structural stability of these faults during the last 8000 years can be presumed.  相似文献   

4.
Tectonic evolution of the internal sector of the Central Apennines, Italy   总被引:2,自引:0,他引:2  
A wide sector of the internal portion of the Central Apennines, which comprises the southern Lepini Mtns up to the northern Simbruini Mtns has been investigated through detailed field mapping and integrated with structural analyses. A few small productive oil fields and a large number of hydrocarbon seeps and oil impregnations are located in this sector. This area offers good opportunities for testing the use of structural fieldwork methodologies in order to highlight oil migrating paths, from Triassic source rocks, and prospecting chances for oil field exploitation.The main stages of the structural evolution of the area took place after deposition of the foredeep sediments (Frosinone Fm.), i.e. after Late Tortonian, under a stress field characterised by a NE–SW trending σ1, which was responsible for the early emplacement of major thrust faults present in the area. The Messinian-Early Pliocene thrust-top basin deposits allowed the reconstruction of an in-sequence evolution of the thrust system. The development of out-of-sequence thrusting post-dates these structures leading to a further strong shortening phase in the area during the Pliocene. This phase is characterised by a roughly NNE–SSW trending σ1. Some peculiar tectonic features evidenced by thrust faults with younger-over-older relationships and an inversion of the original stacking of thrust sheets developed during this phase.Successively, a block-faulting tectonic, mainly with NE–SW extension stress field, occurred and dismembered the compressive tectonic edifice.Later on up to the Middle Pleistocene, N–S to NNE–SSW trending dextral strike-slip faults also acted in the area. Associated to the strike-slip tectonics are local volcanic centres as well as necks, whose compositions show a mantle origin, thus indicating deep seating and a possible lithospheric significance of these structures.In the light of this study, the reduced extension of the productive oil area as well as the spotting of oil seeps, may indicate that the migration conditions are not tied to well defined structures but that likely the cross-cutting points among structures facilitate the conditions for an upwards rising of oil. These conditions in particular are achieved at least in two cases: (1) where the Late Triassic source rocks do not have great depth due to normal or reverse faults, or (2) at a major depth when encountered by transcurrent-oblique roughly N–S trending faults—in both cases oil can easily migrate along the damage zone associated to the fault plane.  相似文献   

5.
Swath bathymetry data and seismic reflection profiles have been used to investigate details of the deformation pattern in the area offshore southwestern Taiwan where the Luzon subduction complex encroaches on the passive Chinese continental margin. Distinctive fold-and-thrust structures of the convergent zone and horst-and-graben structures of the passive margin are separated by a deformation front that extends NNW-ward from the eastern edge of the Manila Trench to the foot of the continental slope. This deformation front gradually turns into a NNE–SSW trending direction across the continental slope and the Kaoping Shelf, and connects to the frontal thrusts of the mountain belt on land Taiwan. However, the complex Penghu submarine canyon system blurs the exact location of the deformation front and nature of many morphotectonic features offshore SW Taiwan. We suggest that the deformation front offshore SW Taiwan does not appear as a simple structural line, but is characterized by a series of N–S trending folds and thrusts that terminate sequentially in an en-echelon pattern across the passive Chinese continental slope. A number of NE–SW trending lineaments cut across the fold-and-thrust structures of the frontal accretionary wedge and exhibit prominent dextral displacement indicative of the lateral expulsion of SW Taiwan. One of the prominent lineaments, named the Yung-An lineament, forms the southeastern boundary of the upper part of the Penghu submarine canyon, and has conspicuous influence over the drainage pattern of the canyon  相似文献   

6.
A study on the bulk distributions and molecular structures of n-alkanes and polycyclic aromatic hydrocarbons (PAH) in organic matter of the sediments from the Bay of Bengal and the Eastern and Central Indian Basins was undertaken. The former two regions represent areas characterised by “normal” sedimentation while the third one mainly represents a region of “active tectonism”. Content of the hydrocarbons in the sediments of “normal” sedimentation ranges between 4.6 and 10.5 μg/g and aromatic hydrocarbons ranges between 0 and 0.38 μg/g. n-Alkanes in the sediments of the northern deep part of the Bay of Bengal consist mostly of long-chain structures (total C25–C33 up to 70%) with a high carbon preference index (CPI=3.01–3.43), indicating a large contribution of organic matter from terrigenous sources. The sediments from the Eastern Indian Basin have n-alkane distributions in which the long-chain components did not exceed 52.5% and the CPI was 1.7–1.90, indicating that the hydrocarbons are mostly derived from marine sources. Sharp increases of hydrocarbons are found in the vicinity of the tectonically active region of the Central Indian Basin, particularly in the sediments collected from the fracture zone. The total concentration of hydrocarbons increase to 170 μg/g and the aromatic hydrocarbons fraction to 156.3 μg/g. The proportion of short-chain n-alkanes increases up to 70%, CPI decreases to 0.76–1.12, and high concentrations of n-C16 (16–40%) occur, all of which are absent in the other samples. The molecular content of PAH includes the unsubstituted individual structures: biphenyl, fluorene, pyrene, perylene, benzo(ghi)perylene, and the groups of homologues of naphthalene, benzofluorene, phenanthrene and chrysene. The association of the PAH and composition of paraffin hydrocarbons in the surficial sediments of deformation zone indicate that these are the resultant products of hydrothermal processes. It is, therefore, suggested that the association and composition of the hydrocarbons in sediments can be utilised as a paleoceanographic parameter to decipher the history of tectonism of an area.  相似文献   

7.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

8.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   

9.
The South China Sea (SCS) is a marginal sea off shore Southeast Asia. Based on magnetic study, oceanic crust has been suggested in the northernmost SCS. However, the crustal structure of the northernmost SCS was poorly known. To elaborate the crustal structures in the northernmost SCS and off southwest Taiwan, we have analyzed 20 multi-channel seismic profiles of the region. We have also performed gravity modeling to understand the Moho depth variation. The volcanic basement deepens southeastwards while the Moho depth shoals southeastwards. Except for the continental margin, the northernmost SCS can be divided into three tectonic regions: the disturbed and undisturbed oceanic crust (8–12 km thick) in the southwest, a trapped oceanic crust (8 km thick) between the Luzon-Ryukyu Transform Plate Boundary (LRTPB) and Formosa Canyon, and the area to the north of the Formosa Canyon which has the thickest sediments. Instead of faulting, the sediments across the LRTPB have only displayed differential subsidence offset of about 0.5–1 s in the northeast side, indicating that the LRTPB is no longer active. The gravity modeling has shown a relatively thin crust beneath the LRTPB, demonstrating the sheared zone character along the LRTPB. However, probably because of post-spreading volcanism, only the transtension-shearing phenomenon of volcanic basement in the northwest and southeast ends of the LRTPB can be observed. These two basement-fractured sites coincide with low gravity anomalies. Intensive erosion has prevailed over the whole channel of the Formosa Canyon.  相似文献   

10.
Marine seismic reflection profiles from offshore SW Taiwan combined with onland geological data are used to investigate the distribution and nature of the deformation front west of Taiwan. Locations of the frontal structure west of Taiwan are generally connected in a linear fashion, although the alignment of frontal structures is offset by strike-slip faults. The deformation front begins from the northern Manila Trench near 21°N and continues northward along the course of the Penghu Submarine Canyon in a nearly N–S direction north of 21°N until it reaches the upper reaches of Penghu Canyon at about 22°15′N. The deformation front then changes direction sharply to the northeast. It connects to the Chungchou thrust fault or the Tainan anticline in the coastal plain and continues northwards along the outer Western Foothills to the northern coast of Taiwan near 25°N. Characteristics of structural style, strain regime, sedimentation and tectonics vary along the trend of the deformation front. Ramp anticlines, diapiric intrusion and incipient thrust faults are commonly associated with the deformation front. Variations in structural style along strike can be related to different stages of oblique collision in Taiwan. The deformation front (collision front) west of Taiwan can be considered as a boundary between contraction in the Taiwan orogen and extension west of the collision zone. The deformation front east of the Tainan Basin and its northward extension along the outer limit of the Western Foothills is the surface trace separating the foreland thrust belt from the nearby foredeep, not a boundary between the Chinese and Taiwan margins. The submarine deformation front off SW Taiwan is the surface trace separating the submerged Taiwan orogenic wedge from the Chinese passive continental margin, not a surface trace of the plate boundary between the Eurasian and Philippine Sea plates.  相似文献   

11.
The diverse geodynamic conditions of the parental magma??s melting are responsible for the compositional diversity of the alkaline volcanics near the southwestern margin of Iberia. The petrological-geochemical data show that the volcanics of the Gorringe Bank originated within the continental plate. The parental melilitite melts depleted in silica and anomalously enriched with trace elements could have been generated only in deep settings with a low degree of metasomatically enriched mantle matter melting. The volcanic melilitite-nephelinite-phonolite series is widespread in alkaline provinces of the Eurasian, African, and other continental plates. The Ampere, Josephine, and other seamounts and islands of the region are largely composed of volcanic rocks belonging to the picrobasalt-hawaiite-mugearite association. Their parental magmas were generated within the oceanic plate at shallower depths under a higher degree of moderately enriched oceanic lithospheric mantle melting. Both series of volcanics were formed under the influence of mantle plumes.  相似文献   

12.
Knowledge of the in situ, or contemporary stress field is vital for planning optimum orientations of deviated and horizontal wells, reservoir characterization and a better understanding of geodynamic processes and their effects on basin evolution.This study provides the first documented analysis of in situ stress and pore pressure fields in the sedimentary formations of the Cuu Long and Nam Con Son Basins, offshore Vietnam, based on data from petroleum exploration and production wells.In the Cuu Long Basin, the maximum horizontal stress is mainly oriented in NNW–SSE to N–S in the northern part and central high. In the Nam Con Son Basin, the maximum horizontal stress is mainly oriented in NE–SW in the northern part and to N–S in the central part of the basin.The magnitude of the vertical stress has a gradient of approximately 22.2 MPa/km at 3500 m depth. Minimum horizontal stress magnitude is approximately 61% of the vertical stress magnitude in normally pressured sequences.The effect of pore pressure change on horizontal stress magnitudes was estimated from pore pressure and fracture tests data in depleted zone caused by fluid production, and an average pore pressure–stress coupling ratio (ΔShPp) obtained was 0.66. The minimum horizontal stress magnitude approaches the vertical stress magnitude in overpressured zones of the Nam Con Son Basin, suggesting that an isotropic or strike-slip faulting stress regime may exist in the deeper overpressured sequences.  相似文献   

13.
海洋核杂岩   总被引:1,自引:0,他引:1  
为了解释洋壳中大量铲形正断层及垂直洋中脊的大量线理(如大西洋中脊的巨型窗棱构造)等现象,通过与大陆上变质核杂岩对比,近来提出了一种新的海底构造类型———海洋核杂岩。在洋底深地震剖面上核杂岩结构形态可以分为3部分,其中第1部分为层1和层2,以脆性变形为特征;第2部分为脆-韧性过渡层,拆离带发育其中,由白色结壳式碳酸盐岩和强烈蛇纹石化的橄榄岩或玄武岩、超镁铁质糜棱岩、糜棱状辉长岩等组成。拆离面之上为未变质的薄层海洋沉积层,其下为热洋幔的退变质岩石组成;第3部分为核部,以塑性变形为特征,常被超基性岩体(尤其是辉长岩侵入体)底辟侵入。与大陆变质核杂岩相比,海洋核杂岩具有明显的独特性。海洋核杂岩的拆离断层同样有数十千米的位移量,因而,可能导致出现海底磁条带的局部错位现象,使得洋壳磁条带的平面结构复杂化。  相似文献   

14.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   

15.
The Tamayo transform fault occurs at the north end of the East Pacific Rise where it enters the Gulf of California. The two deep-tow surveys reported here show that the transform fault zone changes significantly as a function of distance from the spreading center intersections. At site 1, near the intersection, one side of the fault is young and the fault zone is narrow and well-defined. Strike slip occurs in a zone approximately 1-km wide suggesting a correspondingly narrow zone of decoupling between the Pacific and North American plates. On the young side of the strike-slip zone, normal faults occur along shear zones which are 45°–50° oblique to the transform strike. They occur parallel to the short axis of the strain ellipse for transform fault strain here, i.e., perpendicular to the least compressive stress. The transform walls are formed by normal faulting as has been pointed out in previous detailed surveys. Here, however, the age contrast of 2.5 m.y. across the transform valley is apparent in the morphology of the normal fault scarps. While the scarps are steep and well-defined on the young side, the scarps on the older side have gradual 10°–30° slopes and appear to be primarily talus ramps. Apparently, the scarps have been tectonically eroded by continued strike slip activity after the initial stages of normal faulting. Thus, transform valleys should be quite asymmetric in cross-section where there is a significant age contrast and one side is less than approximately 0.5 m.y. old. Also, along older sections of the transform valley walls, normal faulting may not be at all obvious due to degradation of the scarps by tectonic erosion. This phenomenon makes the likelihood of transform faults providing windows into the oceanic crust most unlikely except in special cases.The picture of transform deformation is more complex at site 2 in the central portion of the fault where both sides of the fault are greater than 1 m.y. old. Here the transform valley is wider (25–30 km as opposed to 2–5 km). There is no clear simple zone of strike slip tectonics. In fact, the only clear evidence for deformation is the intrusion of magmatic or serpentinite diapirs through the sediments of the transform valley floor. The diapirs have deformed the turbidite layers flooring the valley and in one carefully studied case the turbidite sequence has been uplifted, perched atop the diapir. The pattern of deformation on this outcropping diapir shows radial and concentric fractures which can be modeled by a vertical intrusion circular in plan view. Magnetic studies limit the possible composition to basalt or serpentinite. A 60-km-long median ridge is also likely to be the product of intrusion along the transform fault. The survey at site 2 pointed out the importance of vertical tectonics in the transform valley floor and in particular the importance of diapiric intrusions of either basaltic or serpentinite composition.Based on initial boundary conditions and present tectonic elements in the Tamayo fault zone, a possible history of the mouth of the Gulf of California is outlined. The median ridge was emplaced starting approximately 0.8 m.y. ago by regional extension across the transform fault, the result of leaky transform faulting. The diapirs occur along a possible relay zone of extension midway along the fault which began approximately 0.15 m.y. ago. The extension in this case is parallel to the trend of the transform fault, is still occurring at present, and may evolve into a true spreading center.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

16.
Within the framework of a correct model, by using long-term satellite information, we study the relations radiation–cloudiness, which are the most important characteristics of energy redistribution between the ocean and the atmosphere. They determine the spatial, seasonal, and interannual oscillations of solar and long-wave radiation in these media and stimulate circulation processes. The annual radiation regime of land and polar oceanic areas shows the present tendency towards global warming. On the average for a year, the radiation budget of the ocean–atmosphere system for the latitudinal zone between 63°N–63°S is stable towards significant variations of the conditions of cloudiness. In this region, the World Ocean acts as a factor stabilizing the global climate. The Earth represents a self-regulating system at the present stage of its evolution, and its climate varies slightly according to certain cycles.  相似文献   

17.
文章首先论述了中南—礼乐断裂带的研究现状, 然后基于重力、磁力、地震剖面和地形等地球物理资料, 综合分析了中南—礼乐断裂带在南海海盆中的空间展布和内部构造形变特征。研究表明: 该断裂带在海盆中由北至南具有明显的分段性。北段(西北次海盆与东部次海盆北部之间)断裂带宽15km, 由(18°00'N, 115°30'E)向(17°30'N, 116°00'E)呈NNW向分布。南段(西南次海盆与东部次海盆之间)断裂带宽约60~80km, 由中沙海台东侧向礼乐地块西侧呈NNW向展布。中南—礼乐断裂带的主控断裂沿中南海岭呈NNW向分布。断裂带在南北两段的过渡区总体呈NNE向展布。断裂带两侧海盆的沉积厚度和洋壳厚度存在差异, 推断该断裂带对其东西两侧海盆的地质构造具有控制作用。根据地壳结构变化, 推测该断裂带至少是一条地壳级断裂。  相似文献   

18.
A 700 km wide-angle reflection/refraction profile carried out in the central North Atlantic west of Ireland crossed the Erris Trough, Rockall Trough and Rockall Bank, and terminated in the western Hatton-Rockall Basin. The results reveal the presence of a number of sedimentary basins separated by basement highs. The Rockall Trough, with a sedimentary pile up to 5 km thick, is underlain by thinned continental crust 8–10 km thick. Some major fault block structures are identified, especially on the eastern margin of the Rockall Trough and in the adjacent Erris Trough. The Hatton-Rockall Basin is underlain by westward-thinning continental crust 22–10 km thick. Sedimentary strata are up to 5 km thick. The strata in the Rockall Trough and Hatton-Rockall Basin probably range in age from Late Palaeozoic to Cenozoic. However, the basins have different sedimentation histories and differ in structural style. The geometry of the crust and sediments suggests that the Rockall Trough originated by pure shear crustal stretching, associated with rift deposits and Cenozoic thermal sag strata. In contrast, the development of the Erris Trough, located on unthinned continental crust, was facilitated by shallow, brittle extension with little deep crustal attenuation. A two-layered crust occurs throughout the region. The lower crustal velocity in the Hatton-Rockall Basin is higher than that in the Rockall Trough. The velocity structure shows no indication of crustal underplating by upper mantle material in the region.  相似文献   

19.
High resolution swath bathymetry of shallow water (< 200 m) oceanic seamounts is a relatively rare issue. During the recent Gorringe_2003 cruise over the Gorringe Bank (Eastern Atlantic) we collected multibeam bathymetry on the bank’s two shallow summits, Gettysburg and Ormonde in the –25/–400m depth range at a resolution rarely achieved over an oceanic seamount. We also carried out bottom samplings and ROV dives in the same bathymetric interval. The acquisition parameters and the characteristics of the echosounder employed allowed to generate a Digital Terrain Model (DTM) with metric spatial resolution upto 75–100 m depths. To ensure proper tidal corrections a tide-gauge was deployed at sea-bottom during the survey. DTM reveals for the Gettysburg Seamount an almost perfectly circular summit resulting from the blanket of bioclastic sediments over an igneous ‘core’ consisting of sheared and foliated serpentinites. The core is dissecated by N 10° W trending ridges elevating some tens of metres and filled in between by bioclastic sands. Both foliation and ridge patterns seem related to primary igneous fabric rather than later structural deformation. The overall circular shape confirms the origin of the seamount as a mantle serpentinite diapir in analogy with similar, but subduction-related, circular seamounts observed in the Bonin Trench (western Pacific). In contrast the Ormonde elongated summit follows the regional tectonic trend with a N 60° E active (seismogenic?) fault on its southeastern flank. Its basement morphology corresponds to the outcrops of igneous rocks chiefly consisting of gabbros, volcanic rocks and dyke intrusions. On both seamounts topographic profiles show that the ‘shelf’ area is somewhat convex rather than flat like that of ‘Pacific type’ guyots and is bordered by a depositional, locally erosional shelf break, located between –170 and –130 m. Various terraced surfaces and some geological evidence confirm previous observations and indicate relative sea-level oscillations with partial emersion of the two summits that seem occurred during the last glacial cycle (past 120 ka).  相似文献   

20.
A regional study of the continental margin between the Senja and Molloy-Spitsbergen fracture zones reveals that the transition from continental to oceanic crust occurs in a narrow zone beneath the outer shelf and uppermost slope. The postulated continent-ocean boundary appears to be fault-related consisting of sheared and rifted segments. The marginal structures are compatible with a plate tectonic model in which the southern Greenland Sea opened along a northeasterly propagating plate boundary in the Eocene, whereas the northern Greenland Sea started opening in the early Oligocene. The main structure at the margin is the Hornsund Fault Zone which probably reflects an old zone of weakness rejuvenated in the Tertiary, first by shear and later by extensional movements. In the early Tertiary local transpressional and transtensional components along the plate boundary are associated with the Spitsbergen Orogeny, emplacement of belts of high-density oceanic crust and tectonism in the western Barents Sea. A complex volcanic rifted margin characterized by the Bjørnøya Marginal High links the predominantly sheared margin segments on either side. The main ridge-like segment of the Hovgaard Fracture Zone was originally part of the Spitsbergen margin. In a regional sense, the Hornsund Fault Zone demarcates the eastern boundary of the Tertiary sedimentary wedge which reaches a total thickness of more than 7 km. There appears to have been a considerable increase in deposition of sediments the last 5–6 my. Depocentres located seaward of the east-west fjord systems and submarine depressions indicate a relationship between late Cenozoic glaciations and high sedimentation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号