首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The major objective for clover in a winter wheat/white clover intercropping system is to supply nitrogen (N) for the wheat. A field experiment was repeated in 2 years on a loamy sand in Denmark to investigate the possibilities for increasing N supply to the winter wheat by cutting and mulching the clover between the wheat rows. The clover was cut with a weed brusher on three different dates in each year.Intercropped wheat with unbrushed clover had a lower grain yield than wheat as a sole crop. Brushing increased wheat N uptake and wheat grain yields. Intercropping with two or three brushing dates gave higher wheat yields than wheat as the sole crop. The largest increases in grain N uptake, 21–25 kg N ha−1, were obtained for the brushings around wheat flag leaf emergence. The highest yield increases with a single brushing, 0.98–1.11 Mg DM ha−1, were obtained when brushing was performed during the stem elongation phase. The largest grain yields for treatments with two brushings were obtained with a first brushing at start of stem elongation and a second around flag leaf emergence. The first brushing probably provided N to increase the wheat leaf area index and thus the light interception, while the second brushing provided N to sustain the leaf area during grain filling and reduced clover biomass and therefore competition for water. Intercropping wheat and clover increased grain N concentrations by 0.11–0.39%-point compared with wheat as a sole crop. Intercropping may thus offer possibilities for improving the bread-making quality of organically grown wheat.  相似文献   

2.
Ceramic suction cups were used to measure nitrogen (N) leaching over three consecutive winter periods from a long established ley–arable rotation experiment. We examined four treatments: 3-year all-arable, grass–clover ley and grass ley each followed by two seasons of arable test crops and an 8-year grass ley that remained as grass throughout our study. Four rates of fertilizer N were applied to sub-plots of the test crops. Our primary objective was to compare the effect that the rotations had on N leaching from the arable test crops. Cultivation of the 3-year grass and grass/clover leys and the sowing of winter wheat did not create a major flush of net N mineralization because of the unusually dry autumn weather. In the first winter following sward destruction, although the concentration of N in drainage following the grass/clover was low, it was significantly greater than that following the grass, which was greater than that from the continuous grass treatment. In contrast, the concentration and quantity of N in drainage from the all-arable treatment was at least five times greater than any other treatment. This was due to earlier and more rapid N release from the residue of the preceding arable crop. In the winters after harvest of the cereal test crops (i.e. the second and third season of measurements), the peak drainage N concentrations were similar in all treatments (20 μg NO3-N ml−1). The amount of N leached was not related to fertilizer addition. Over the full 5-year rotation, we found that the rotations that included a ley were better at conserving N; the estimated annual N leaching losses from the all-arable, grass, grass/clover and continuous grass were 29, 17, 17 and 2 kg N ha−1 year−1, respectively. On all treatments, but especially the grass–clover ley, the greatest rate of fertilizer addition caused a yield reduction. The N-balance indicates a considerable net immobilization during this study under the sub-plots of the arable test-crops that received N fertilizer. This corresponds to similar results of N-balance studies on other long-term experiments.  相似文献   

3.
This work was aimed at providing a sustainable approach in the use of manure in irrigated maize crop under Mediterranean climatic conditions. To this end, the effect of continuous annual applications of dairy cattle manure, combined or not with mineral N fertilizer, on the following parameters was studied: grain yield, grain and plant N concentration, N uptake by plant, N use efficiency, and soil N and organic carbon. The experiment was conducted in a furrow-irrigated sandy soil under dry Mediterranean conditions during seven years. Three different rates of cattle manure (CM): 0, 30 and 60 Mg ha−1, were applied each year before sowing. These CM rates were combined with four mineral N rates (0, 100, 200 and 300 kg N ha−1) applied at sidedress.On average, the highest grain yields during the 7 years were obtained with the combination of CM at 30 Mg ha−1 and mineral fertilizer and with CM at 60 Mg ha−1 without mineral fertilizer. With CM at 30 Mg ha−1, mineral fertilizer increased yields during most of the growing seasons, meanwhile with CM at 60 Mg ha−1, there was not any significant effect of the joint application of mineral fertilizer on yields. Overall, best results were obtained exceeding maximum rates according to present legislation. The mean apparent nitrogen recovery (ANR) fraction during the 7 seasons was 29% for N exclusively applied as CM. Overall, increased N rates applied as CM resulted in decreased ANRs. However, ANR with CM at 30 and 60 Mg ha−1 increased during the first two seasons. This increased ANR ascribed to mineralization of residual organic N applied in previous seasons explained the increasing yields observed in the treatments along the study.The application of CM during 7 years increased the soil organic carbon in the first 30 cm by 5.7 and 9.9 Mg ha−1 with CM at 30 and 60 Mg ha−1, respectively, when compared to the initial stock. Thus, manure-based fertilization could be an alternative to mineral fertilizer in order to achieve high maize yields while improving soil quality under dry Mediterranean conditions.  相似文献   

4.
The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry) and undersowing catch crops (OF + C + M), a system with manure but without undersowing catch crops (OF ? C + M), and a system without manure and with catch crops (OF + C ? M). A grass-clover green manure was used as N fixing crop in the other organic system with catch crops (OG + C + M). Cuttings of grass-clover were removed from the plots and an equivalent amount of total-N in pig slurry was applied to the cropping system. The conventional rotation included mineral fertilizer and catch crops (CF + C + F), although only non-legume catch crops were used. Measurements of cereal dry matter (DM) at harvest and of grain N contents were done in all plots. On average the FASSET model was able to predict the yield and grain N of cereals with a reasonable accuracy for the range of cropping systems and soil types studied, having a particularly good performance on winter wheat. Cereal yields were better on the more loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark.  相似文献   

5.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

6.
The effect of spring application of separated liquid pig manure (LPM) in combination with medium to high levels of inorganic nitrogen (N) to winter wheat was investigated in a field trial study at two sites in two successive growing seasons (2007–2008). The key crop parameters examined were crop N uptake (CNU), N use efficiency and grain yield. The LPM product (3.5–4.0 g/kg total N) was applied at three application rates: 15, 30 and 45 m3/ha using a band spread application technique. The LPM was used in combination with reduced and recommended inorganic N levels; a zero N control was also included. Weather conditions in both seasons were similar with below average rainfall levels in spring followed by above average summer rainfall levels. The zero N control gave lowest CNU levels in both growing seasons (70–88 kg N/ha). Inorganic N application at the reduced and recommended N rates increased CNU levels by approximately 100 kgN/ha and 112 kgN/ha, respectively compared to the untreated control. Liquid pig manure application resulted in an additional crop uptake of 58 kgN/ha. Nitrogen use efficiencies for LPM ranged from 23 to 56% while inorganic N use efficiency levels were higher ranging from 58 to 73%. Lowest grain yield levels were measured from the zero N control (range 3.95–5.01 t/ha). The application of inorganic N increased grain yield levels by a minimum of 4.05 t/ha with LPM usage increasing grain yield levels by an additional 0.2–1.09 t/ha. This study showed that LPM could be successfully used in combination with inorganic fertilisers for the improved N nutrition of winter wheat in spring as part of an integrated nutrient programme.  相似文献   

7.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

8.
The lateness, tallness and high vigour of old tall durum wheat cultivars could be advantageous for dual-purpose use and their high propensity for lodging should be reduced by grazing. A 3-year field trial was performed in Sardinia, Italy, in a typical Mediterranean environment. Crops of the durum wheat cultivar Senatore Cappelli were sown in October, and grazing was simulated by clipping half of the plots at the terminal spikelet stage of development. The forage biomass derived from clipping varied greatly between seasons (from 0.8 to 3.3 t ha−1 dry matter) in response to the notable inter-seasonal variability in weather conditions. Cultivar Senatore Cappelli showed good recovery following clipping, with the ability to attain almost complete radiation interception well before anthesis. The high number of leaves that emerged after clipping might have contributed to this good recovery. Nevertheless, clipping reduced the dry matter produced by anthesis (16 t ha−1 in clipped compared to 21 t ha−1 in unclipped crops) as well as the final dry matter (DMMAT) (19 t ha−1 in clipped compared to 23 t ha−1 in unclipped crops), although these differences disappeared when the clipped biomass was included. The lower lodging observed at anthesis in the clipped (21%) compared with unclipped crops (63%) likely reduced the difference between treatments. The lower DMMAT of clipped treatments was reflected in a lower grain yield (GY) (3.4 t ha−1 vs 4.2 t ha−1 in the unclipped treatment). Clipping did not affect the amount of nitrogen present in the biomass, nitrogen uptake efficiency or radiation use efficiency. GY reduction after clipping was mediated by the reduction in spikes m−2 and kernels m−2 (KNO). Spike fertility was not affected by clipping, because the same amount of radiation was available for each spike (about 1 MJ). The period with reduced ground cover after clipping was reflected in an increased evaporation and reduced transpiration, which did not alter the total water used and increased the transpiration efficiency in terms of DMMAT.Old tall durum wheat cultivars manifested good suitability for dual-purpose use in environments with low attainable yields because their low grain yield potential contributed to reducing the negative effects of clipping on GY. Their high straw yield and kernel protein percentage represented an advantage with respect to semi-dwarf cultivars.  相似文献   

9.
The reduction in crop diversity and specialization of cereal-based cropping systems have led to high dependence on synthetic nitrogen (N) fertilizer in many areas of the globe. This has exacerbated environmental degradation due to the uncoupling of carbon (C) and N cycles in agroecosystems. In this experiment, we assessed impacts of introducing grain legumes and cover crops to innovative cropping systems to reduce N fertilizer application while maintaining wheat yields and grain quality. Six cropping systems resulting from the combination of three 3-year rotations with 0, 1 and 2 grain legumes (GL0, GL1 and GL2, respectively) with (CC) or without (BF, bare fallow) cover crops were compared during six cropping seasons. Durum wheat was included as a common high-value cash crop in all the cropping systems to evaluate the carryover effects of rotation. For each cropping system, the water use efficiency for producing C in aerial biomass and yield were quantified at the crop and rotation scales. Several diagnostic indicators were analyzed for durum wheat, such as (i) grain yield and 1000-grain weight; (ii) aboveground biomass, grain N content and grain protein concentration; (iii) water- and N-use efficiencies for yield; and (iv) N harvest index. Compared to the GL0-BF cropping system, which is most similar to that traditionally used in southwestern France, N fertilizer application decreased by 58%, 49%, 61% and 56% for the GL1-BF, GL1-CC, GL2-BF and GL2-CC cropping systems, respectively. However, the cropping systems without grain legumes (GL0-BF and GL0-CC) had the highest water use efficiency for producing C in aerial biomass and yield. The insertion of cover crops in the cropping systems did not change wheat grain yield, N uptake, or grain protein concentration compared to those of without cover crops, demonstrating a satisfactory adaptation of the entire cropping system to the use of cover crops. Winter pea as a preceding crop for durum wheat increased wheat grain production by 8% (383 kg ha−1) compared to that with sunflower  the traditional preceding crop  with a mean reduction in fertilizer application of 40–49 kg N ha−1 during the six-year experiment. No differences in protein concentration of wheat grain were observed among preceding crops. Our experiment demonstrates that under temperate submediterranean conditions, properly designed cropping systems that simultaneously insert grain legumes and cover crops reduce N requirements and show similar wheat yield and grain quality attributes as those that are cereal-based.  相似文献   

10.
Soil fertility and climate risks are hampering crop production in the Sahelian region. Because experiments with only a few fertility management options on a limited number of sites and years cannot fully capture the complex and highly non-linear soil–climate–crop interactions, crop growth simulation models may suitably complement experimental research to support decision making regarding soil fertility and water management. By means of a long term (23 years) scenario analysis using the Agricultural Production Systems Simulator (APSIM) model, this study investigates millet response to N in view of establishing N recommendations better adapted to subsistence small-holder millet farming in the Sahel. Prior to this, the APSIM model was tested on a rainfed randomized complete block experiment carried out during the 1994 and 1995 cropping seasons, having contrasting rainfall conditions. The experiment combined, at three levels each, the application of cattle manure (300, 900 and 2700 kg ha?1), millet residue (300, 900 and 2700 kg ha?1) and mineral fertilizer (unfertilized control, 15 kg N ha?1 + 4.4 kg P ha?1 and 45 kg N ha?1 + 13.1 kg P ha?1) at ICRISAT Sahelian Center, Niger. The model suitably predicted plant available water PAW and the simulated water and nitrogen stress were in agreement with measurement (water) and expectation (N) regarding the fertilizer and rainfall conditions of the experiment. APSIM simulations were in satisfactory agreement with the observed crop growth except for the highest crop residue application rates (>900 kg ha?1). For biomass and grain yield, the model performance was relatively good in 1994 but biomass yields were slightly overpredicted in 1995. The model was able to adequately reproduce the average trend of millet grain yield response to N inputs from manure and fertilizer, and to predict the overall observed higher grain yield in 1995 compared to 1994, despite the better rainfall in 1994. The 23-year, long term scenario analysis combining different application rates of cattle manure, millet residue and mineral fertilizer, showed that moderate N application (15 kg N ha?1) improves both the long term average and the minimum yearly guaranteed yield without increasing inter-annual variability compared to no N input. Although it does imply a lower average yield than at 30 kg N ha?1, the application of 15 kg N ha?1 appears more appropriate for small-holder, subsistence farmers than the usual 30 kg N ha?1 recommendation as it guarantees higher minimum yield in worst years, thereby reducing their vulnerability.  相似文献   

11.
Data from a field experiment (1995–2000) conducted on a fertile sandy loess in the Hercynian dry region of central Germany were used to determine the energy efficiency of winter oilseed rape (Brassica napus L.) as affected by previous crop and nitrogen (N) fertilization. Depending on the previous crop, winter oilseed rate was cultivated in two different crop rotations: (1) winter barley (Hordeum vulgare L.)–winter oilseed rape–winter wheat (Triticum aestivum L.), and (2) pea (Pisum sativum L.)–winter oilseed rape–winter wheat. Fertilizer was applied to winter oilseed rape as either calcium ammonium nitrate (CAN) or cattle manure slurry. The N rates applied to winter oilseed rape corresponded to 0, 80, 160 and 240 kg N ha−1 a−1.Results revealed that different N management strategies influenced the energy balance of winter oilseed rape. Averaged across years, the input of energy to winter oilseed rape was highly variable ranging from 7.42 to 16.1 GJ ha−1. Lowest energy input occurred when unfertilized winter oilseed rape followed winter barley, while the highest value was obtained when winter oilseed rape received 240 kg N ha−1 organic fertilization and followed winter barley. The lowest energy output (174 GJ ha−1), energy from seed and straw of winter oilseed rape, was observed when winter oilseed rape receiving 80 kg N ha−1 as organic fertilizer followed winter barley. The energy output increased to 262 GJ ha−1 for winter oilseed rape receiving 240 kg N ha−1 as mineral fertilizer followed pea. The energy efficiency was determined using the parameters energy gain (net energy output), energy intensity (energy input per unit grain equivalent GE; term GE is used to express the contribution that crops make to the nutrition of monogastric beings), and output/input ratio. The most favourable N rate for maximizing energy gain (250 GJ ha−1) was 240 kg N ha−1, while that needed for minimum energy intensity (91.3 MJ GE−1) was 80 kg N ha−1 and for maximum output/input ratio (29.8) was 0 kg N ha−1.  相似文献   

12.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

13.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

14.
Dryland wheat is the major contributor to wheat production in the world, where water deficiency and poor soil fertility are key factors limiting wheat grain yields and nutrient concentrations. A field experiment was carried out from June 2008 to June 2011 at Shilipu (latitude 35.12°N, longitude 107.45°E and altitude 1200 m above sea level) on the Loess Plateau (a typical dryland) in China, to investigate the effects of rotation with soybean (Glycine max) green manure (GM) on grain yield, total N and total Zn concentrations in subsequent wheat (Triticum aestivum L.), and on nitrate-N and available Zn in the soil. The benefits of crop rotation with soybean GM on wheat grain yields became more evident with time. In the second and third years, the grain yields of wheat rotated with soybean GM reached 4871 and 5089 kg ha−1 at the 108 kg N ha−1 rate. These yields were 21% and 12% higher than the highest yields of wheat under a fallow-winter wheat (FW) rotation. Rotation with soybean GM reduced the amount of N fertilizer required to obtain wheat grain yields and biomass levels similar to wheat grown in the FW rotation by 20–33%. In the first 2 years, average grain N concentrations over all N rates increased by 6% and 12%, and those of Zn increased by 26% and 14% under the soybean GM-winter wheat (SW) rotation, compared with the FW rotation. The increased grain N and Zn concentrations were found to be related to the increased concentrations of nitrate-N and available Zn in the soil, particularly at the sowing of winter wheat. However, grain N and Zn concentrations were not improved by rotation with soybean GM in the third year. This was attributed to the dilution effect caused by the more grain yield increase than its nutrient export. In conclusion, planting soybean for GM in fallow fields reduced the need for N fertilizer to enhance wheat yields in this dryland region. Change in wheat grain N and Zn concentrations was related to soil nutrient concentrations, and to the balance between increased grain yield and its nutrient export.  相似文献   

15.
Nitrogen (N) and plant density are two crucial factors that affect winter wheat (Triticum aestivum L.) yield and quality, but little is known regarding the effects of interactions between these two factors on the amount and size distribution of protein fractions and quality traits. We grew the bread wheat cultivar Jinan17 in two successive seasons (2012–2013 and 2013–2014) at three densities of 120 plants m−2 (low), 180 plants m−2 [the usual rate for a multiple-spike cultivar with high tillering ability in the North China Plain (NCP)], and 240 plants m−2 (high) and two levels of N fertilisation of 0 (low N availability treatment without N fertilisation) and 240 kg ha−1 (the usual N rate for winter wheat production in the NCP) to evaluate the effect of N level × plant density interaction on grain yield, grain protein concentration, the amount and composition of protein fractions, dough development time, dough stability time, and loaf volume. The effect of plant density on Jinan 17 grain yield and quality differed between the two N levels. As plant density increased, all the parameters listed above decreased under 0 kg ha−1 N fertilisation, but increased under 240 kg ha−1 N fertilisation. Stepwise regression analysis showed that the dough rheological properties and breadmaking quality of Jinan 17 were affected by plant density under both N levels, primarily through changes in the polymerisation degree of glutenins in the flour.  相似文献   

16.
The North China Plain (NCP) is one of the major winter wheat (Triticum aestivum L.) producing areas in China. Current wheat yields in the NCP stabilize around 5 Mg ha−1 while the demand for wheat in China is growing due to the increase in population and the change in diet. Since options for area expansion of winter wheat are limited, the production per unit of area need to be increased. The objective of this study is to quantify the production potential of winter wheat in the NCP taking into account the spatial and temporal variability caused by climate. We use a calibrated crop growth simulation model to quantify wheat yields for potential and water-limited production situations using 40 years of weather data from 32 meteorological stations in the NCP. Simulation results are linked to a Geographic Information System (GIS) facilitating their presentation and contributing to the identification of hotspots for interventions aimed at yield improvements. In the northern part of the NCP, average simulated potential yields of winter wheat go up to 9.7 Mg ha−1, while average water-limited yields only reach 3 Mg ha−1. In the southern part of the NCP, both average potential and water-limited yields are about 7.5 Mg ha−1. Rainfall is the limiting factor to winter wheat yields in the northern part of the NCP, while in the southern part, the joint effect of low radiation and high temperature are major limiting factors. Temporal variation in potential yields throughout the NCP is low in contrast with the temporal variation in water-limited yields, which is especially great in the northern part. The study calls for the collection of location-specific and disaggregated irrigated and rainfed wheat yield statistics in the NCP facilitating the identification of hotspots for improvement of current wheat yields.  相似文献   

17.
No tillage (NT) in wheat (Triticum aestivum L.) offers a pragmatic option for resolving the time and edaphic conflicts in rice (Oryza sativa L.)–wheat cropping system (RWS). However, poor stand establishment is an issue in NT wheat, which adversely affects crop growth, grain yield, and profitability. Therefore, a 2-year field study was conducted to assess the potential role of seed priming in improving the stand establishment, grain yield, water productivity and profitability of NT and plough till (PT) wheat grown after direct seeded aerobic (conservation) and puddled transplanted flooded (conventional) rice-based systems. For seed priming, wheat seeds were soaked in aerated water (hydropriming) or solution of CaCl2 (ψs −1.25 MPa; osmopriming) for 12 h, and non-primed seeds were used as control. After harvest of rice, grown as direct seeded aerobic and puddled transplanted flooded crop, primed and non-primed wheat seeds were sown following NT and PT. In both years, stand establishment of NT wheat after direct seeded aerobic and puddled transplanted flooded rice was impeded. Nonetheless, seed priming improved the stand establishment which was visible through earliness and better uniformity of seedling emergence. Overall, primed seeds completed 50% emergence in 6.4 days, against 7.8 days taken by non-primed seeds in NT wheat. The highest emergence index (41.7) was recorded in primed seeds versus 32.0 for non-primed seeds. Improved stand establishment enhanced growth, grain yield, water productivity and profitability in NT wheat. In this regard, osmopriming was the most effective, and produced grain yield of 4.5 Mg ha−1 against 3.8 Mg ha−1 for non-primed seeds in NT wheat. Water productivity of the NT wheat grown from osmoprimed seeds was 8.72 kg ha−1 mm−1 while that from non-primed seeds was 7.21 kg ha−1 mm−1. Among the RWSs, the maximum wheat biomass was produced with PT after direct seeded aerobic rice. However, grain yield, water productivity, and profitability were the highest in NT wheat following direct seeded aerobic rice. Wheat yields grown after direct seeded aerobic rice and transplanted flooded rice were 4.4 and 4.2 Mg ha−1 respectively. Planting NT wheat after direct seeded aerobic rice provided the highest system productivity (1.80) than other RWSs. Thus, seed priming is a viable option to improve the stand establishment, grain yield, water productivity and profitability of NT wheat in the RWS. Nonetheless, osmopriming was a better option than hydropriming in this regard.  相似文献   

18.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

19.
The perennial grass giant reed (Arundo donax L.) has been proposed as a promising biomass energy crop in southern Europe. The aim of this study was to investigate the effects of two fertilisation levels (F = 200–80–200 N–P–K kg ha?1; UF = 0–0–0 N–P–K kg ha?1) and two harvest times (A: autumn, W: winter) on the biomass quality of giant reed as a solid fuel for combustion. Different aged crops grown in central Italy (latitude 43°40′N, and longitude10°19′E) in the period of 1996–2005 were collected and analysed. Our results confirmed that giant reed biomass is characterized by a high content of ash and silicon. Giant reed showed an increase in ash content from F to UF and from A to W. The production of biomass from fertilised crops harvested in the autumn may thus be a good method for reducing the ash content by about 20%. The results also showed an improvement in biomass combustion quality in 10-year-old crops due to a lower ash content and higher SiO2/K2O and CaO/K2O ratios, which could contribute to a lower slagging tendency. This research should help to improve our knowledge of the chemical composition of giant reed and presents possible agronomic strategies to combine a high biomass yield with good combustion quality.  相似文献   

20.
To gain information about the possible use of legume cover crops as an alternative and sustainable weed-control strategy for winter wheat (Triticum aestivum L.), an experiment was conducted at two sites in the Swiss Midlands in 2001/2002. Under organic farming conditions winter wheat was direct-drilled into living mulches established with four different legume genotypes or into control plots without cover crops. Compared to NAT (control plots without cover crops but with a naturally establishing weed community), white clover (Trifolium repens L.), subclover (Trifolium subterraneum L.), and birdsfoot trefoil (Lotus corniculatus L.) reduced the density of monocotyledonous, dicotyledonous, spring-germinating, and annual weeds by the time of wheat anthesis. Strong-spined medick (Medicago truncatula Gaertner) was less efficient in this regard. While the grain yield was reduced by 60% or more for all legumes when compared to NOWEED (control plots kept weed-free), a significant negative correlation between the dry matter of the cover crop and weeds as well as between the cover crop and the winter wheat was observed by the time of wheat anthesis. The effect of manuring (60 m3 ha−1 liquid farmyard manure) was marginal for weeds and cover crops but the additional nutrients significantly increased total winter wheat dry matter and grain yields. The suppression achieved by some legumes clearly demonstrates their potential for the control of weeds in such cropping systems. However, before living legume cover crops can be considered a viable alternative for integrated weed management under organic farming conditions, management strategies need to be identified which maximise the positive effect in terms of weed control at the same time as they minimise the negative impact on growth and yield of winter wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号