首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
实际工程中弧形闸门与闸墩联系紧密,在水流脉动压力下二者相互影响,形成一个体系。为了揭示闸门与闸墩的相互影响规律,采取流固耦合理论对弧形闸门-闸墩体系开展流激振动研究。以某水利工程弧形工作闸门为例,针对弧形闸门单体和弧形闸门-闸墩体系分别建立三维有限元模型,计算两种模型的自振频率,基于模态分析的结果对两种模型进行动力响应分析,总结闸门和闸墩在动力特性和流激振动响应方面的相互影响规律。结果表明:闸墩对闸门动力特性及动力响应具有较大影响,考虑闸墩影响时,弧形闸门自振频率下降,其中以支臂振动为主的第4阶自振频率下降幅度最大,为61.45%,面板及支臂顺河向动位移分别减小44.58%及增大37.93%,面板及支臂动应力分别下降41.70%及增加30.71%;闸门流激振动对闸墩应力有显著影响,相较于闸墩按动力系数计算的最大应力增大了4.713 MPa。采用弧形闸门-闸墩体系模型可以更加准确而全面地评估弧形闸门及闸墩在流激振动下的安全特性。  相似文献   

2.
针对大宽高比弧形钢闸门在水流脉动作用下的动力特性问题,以某节制闸弧形钢闸门为例,建立闸门有限元模型,分析流固耦合、支臂厚度对闸门振动特性的影响。基于随机振动法得到闸门在脉动水流作用下的流激振动位移与应力响应,并利用动力系数法对闸门动力响应做出评价。结果表明:闸门基阶振动受水体影响较小,低阶振动受支臂影响较大;闸门典型工况下的流激振动位移响应最大值为4. 029mm,动应力最大值为61. 247MPa,动力系数均低于1. 20,总体动应力水平较低,在动水作用下可安全运行。  相似文献   

3.
通过物理模型和数值模型相结合的方法,系统研究了大跨度上翻式拱形闸门水动力荷载、结构动力特性和流激振动特性,揭示了闸门结构的流激振动强烈共振现象及成因。针对存在的强烈振动的问题,通过减小闸门底缘下游倾斜面水平面投影面积、缩减闸门底部小横梁尺寸等方式来进行结构优化。优化后的工程现场原型观测结果显示,推荐布置方案有效控制了闸门的有害振动,运行平稳,安全可靠,验证了物理模型试验成果的正确性。  相似文献   

4.
通过试验和数模对闸门流激振动响应仿真模拟是研究闸门振动的一种有效方法。以某水电站泄洪底孔弧形闸门为具体研究对象,根据模型试验要求设计了水力学和水弹性模型,进行了支铰力荷载量测和流激振动响应试验,分析了泄流条件和闸门、闸墩振动的关系,同时将试验所得荷载分别施加于闸门—闸墩耦合数值模型和将闸墩处理成刚性约束的数值模型进行动力响应计算。通过对比分析,认为闸墩振动对闸门动应力和垂向动位移影响较小,但对闸门水平向和侧向动位移影响较大。最后结合数模和物模对闸门振动进行了安全分析。  相似文献   

5.
闸门的结构稳定及抗振性能是水工闸门设计的重点问题。以落久水利枢纽工程溢洪道超大型斜支臂潜孔式弧门为例,采用平面体系法进行基础结构设计,并行FEM强度、刚度安全复核计算过程,交叉验证了平面体系法设计的合理性与有限元计算的可靠性。同时,基于水弹性模型的弧形闸门流激振动试验表明,闸门全开时,优势振频集中在0~5Hz,振动加速度随水头减小而减小;设计水位时闸门局部开启,门体及支臂在大开度工况振动较剧烈。该过程及试验结果可为类似弧形闸门设计及安全运行提供参考。  相似文献   

6.
针对某拱形闸门的流激振动问题,结合水弹模型试验结果,利用ANSYS软件对闸门不同工况下的流激振动特性进行了数值模拟研究,得到了闸门不同工况下应力和位移数据,计算结果同模型试验成果吻合较好。同时,对拱形闸门的安全进行了分析,并提出了相应的建议。  相似文献   

7.
水工闸门流激振动研究进展   总被引:10,自引:0,他引:10       下载免费PDF全文
从水动力荷载与闸门振动特性的关系、水动力荷载作用特点及其控制方法、闸门减振优化设计方法、弧形闸门支臂动力稳定性分析、闸门水弹性振动模拟方法以及闸门流激振动仿真分析等方面,对水工闸门流激振动的研究进行了回顾.并对进一步做好水工闸门的振动研究工作提出了建议.  相似文献   

8.
弧形闸门由于其启门力小、无门槽及运行操作方便等优点,在水工建筑物中得到广泛应用,但不少闸门由于结构设计、布置或运行操作不合理等原因,在运行中会发生强烈振动甚至结构破坏,影响闸门结构的运行安全,特别是高水头、有局部开启控泄要求的大跨度弧形闸门。通过水力学试验、三维有限元静动力分析和流激振动试验,系统研究了深孔弧形闸门的水力学特性、静动力特性、流激振动特性,揭示了闸门结构的流激振动共振现象,并针对分析过程中出现的应力、变形过大问题,提出了加强闸门结构强度和刚度的优化措施,确保其安全平稳运行。  相似文献   

9.
针对平面钢闸门结构受力复杂,运行中受到水压力容易引起剧烈的振动并常伴有漂浮物撞击,这些因素容易导致闸门结构失稳而发生破坏。以某水库泄洪闸为例,考虑流固耦合效应影响,借助有限元软件ABAQUS建立水流场-闸门-漂浮物模型,研究了水流与闸门间流激振动和漂浮物撞击对平面钢闸门开启时变形和动态响应的影响,得到平面钢闸门在正常泄流和伴有漂浮物撞击下闸门泄流两种不同工况下流场流速、动水压力、闸门面板的应力、位移变化情况。结果表明:漂浮撞击下的闸门面板的应力应变均存在不同程度增加,在闸门与水流的流固耦合面中部,存在大面积应力集中现象,其数值接近应力峰值,使得闸门安全运行存在较大的隐患。  相似文献   

10.
三峡大坝导流底孔闸门流激振动水弹性模型试验研究   总被引:10,自引:4,他引:6  
 为了解决三峡大坝导流底孔弧形闸门的流激振动问题,采用完全水弹性相似模型研究了闸门的流激振动。介绍了闸门振动水弹性相似原理、水弹性相似材料的性质、闸门水弹模型模态分析及模型振动试验结果。试验结果表明:闸门在无侧止水或侧止水损坏情况下淹没出流时,将产生强烈的自激振动;闸门两侧缝被封堵以后,在同样的淹没出流情况下,只产生轻微振动;闸门产生强烈振动的主要原因是闸门侧缝射流和下游紊动水流汇合后在门侧形成了自激振荡系统的结果;消除侧缝射流,就可以避免强烈的自激振动。  相似文献   

11.
通过三维有限元数值模型进行涌潮荷载作用下大型桁架式平面闸门动力响应仿真分析,研究大型桁架式平面闸门的结构动力特性,得出流固耦合条件下闸门结构的振动频率变化特征。在此基础上,通过涌潮荷载作用模拟对结构的动力响应进行仿真计算,得出闸门动位移和动应力值。采用水弹性振动模型对闸门结构的涌潮动力响应进行试验验证。验证结果表明,仿真计算结果与试验结果基本一致,仿真计算结果合理。最后,针对局部应力集中现象对闸门结构进行修改优化,并提出抗振优化方案。  相似文献   

12.
大尺寸弧形钢闸门振动剧烈时可能会引起动力失稳破坏。为了解新型翻转式弧形空腔闸门的动力特性,通过Fortran语言自编用户子程序,利用商业有限元软件ABAQUS二次开发功能将模型试验测定离散的水流脉动压力数据转化为作用在闸门上的水动力荷载,基于随机振动分析方法对该空腔闸门进行结构动力数值仿真:①对不同工况下的闸门自振特性进行计算,得到闸门的自振频率和振型;②根据频谱分析理论,对水流脉动压力时域曲线进行了频谱分析;③计算了不同工况下闸门的随机振动响应;④编写了位移、应力最值处理程序。计算结果表明:闸门结构局部应力较大,超出结构容许应力,需对闸门结构进行修改优化,否则结构局部强度不满足要求。  相似文献   

13.
底轴驱动翻板闸门作为一种新兴河道景观闸门,由于其良好的生态效益在河道水利工程中有着广泛的应用。但是该类型闸门应用时间较短,其结构设计理论尚未成熟,对相关的有限元计算方法的研究也不足。为此,以底轴驱动翻板闸门为研究对象,总结了该类型闸门数值模拟静、动力特性的分析计算方法。以某工程为例,采用CFD-CSD耦合数值计算方法探究了底轴驱动翻板闸门结构运行时在水压力作用下的静、动力特性。首先对各个开度运行工况下闸门的水压力进行数值模拟计算,进一步采用单向流固耦合方法将计算得到的水荷载施加在闸门结构上,分析得出闸门各构件应力及位移随开度的变化趋势。再对闸门结构的干、湿模态进行分析,研究闸前水体对闸门自振模态与频率的影响。研究结果表明:各构件应力和变形在闸门全关闭工况时达到最大值,闸门整体最大应力值为200.79 MPa、最大位移值为47.703 mm,应力和位移随闸门开度的增大而逐渐减小;闸门的自振特性受闸前水体的影响显著,在研究该闸门动力特性时,需要考虑流固耦合效应。  相似文献   

14.
大跨度上翻式拱形钢闸门振动特性及抗振优化   总被引:1,自引:1,他引:0       下载免费PDF全文
针对大跨度上翻式拱形钢闸门的水力结构特点,研制了闸门水弹性振动模型,通过水动力荷载特性、结构动力特性和流激振动特性等系统试验研究,反演了闸门结构的共振现象,取得不同工况下作用于门体的水流脉动压力荷载和闸门振动加速度、动位移及动应力等动力响应参数的数字特征和谱特征。针对存在问题,对闸门结构的底缘体型进行了修改,取得了良好的抗振优化效果。  相似文献   

15.
大型弧形钢闸门流激振动数值计算   总被引:2,自引:0,他引:2  
为研究大型弧形钢闸门在脉动压力作用下的动力特性及安全问题,采用附加质量法计算闸门的自振特性,对试验测得的脉动压力进行频谱分析得到其优势频率;采用随机振动的方法,将脉动压力转化为节点荷载施加在闸门数值模型上,得到闸门的动力响应。以贵州平寨水利枢纽为例进行计算,研究结果表明,在水体的作用下闸门的自振频率减小,随着开度的增加,闸门的自振频率呈增大的趋势。闸门1阶振型频率在1.1 Hz左右,脉动水流的优势频率最大0.15 Hz,二者相差较大。闸门最大动位移3.61 mm,发生在正常蓄水位543.00 m开度50%工况下,而在20%和50%开度下闸门动应力较大,最大动应力为43.56 MPa,发生在543.00 m开度50%工况。因此,闸门发生共振的可能性不大,闸门在动水作用下较为安全,但需注意闸门在20%和50%开度下的振动情况,避免在此开度下长时间停留。  相似文献   

16.
针对弧形闸门安全评价中采用的闸门单体计算模型过于简化的问题,应用有限元软件ANSYS对比分析了惯用的闸门单体结构模型与考虑止水摩阻及支铰和牛腿间直接作用的闸坝一体化模型在全闭和瞬间开启2种工况下的静动力特性。以闸坝一体化模型为准,在静力分析方面,在全闭工况时单体模型下框架主横梁的最大位移及等效应力分别偏大108.5%和67.1%,支臂内力偏大52.8%,单体模型下框架极不经济;在瞬间开启工况时单体模型上框架主横梁的最大位移及等效应力偏差分别为-10.1%和-21.2%,支臂内力偏小8.1%,单体模型上框架极不安全。在动力分析方面,止水及流固耦合作用使闸坝一体化模型的弧门前10阶频率最大下降48%,远离了流激振动的主频区,利于弧门的动力稳定。结果表明:合理弧形闸门结构安全评价的模型应为校核水位瞬间开启工况下的闸坝一体化模型,采用此工况及模型才能确保结构分析的正确性,实现闸门结构安全性与经济性的统一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号