首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
As critical determinants of growth anisotropy in plants, cortical microtubules are thought to constrain the movement of cellulose synthase complexes and thus align newly deposited cellulose microfibrils. We tested this cellulose synthase constraint model using the temperature-sensitive mor1-1 mutant of Arabidopsis. Contrary to predictions, the disruption of cortical microtubules in mor1-1 root epidermal cells led to left-handed root twisting and radial swelling but did not alter the transverse orientation of cellulose microfibrils. We also found that drug-dependent disassembly or hyperstabilization of cortical microtubules did not alter the parallel order of cellulose microfibrils. By measuring cellulose content in mor1-1 seedlings, we verified that cellulose synthesis is not reduced at the restrictive temperature. The independence of cortical microtubule organization and cellulose microfibril alignment was supported by the observation that double mutants of mor1-1 and rsw1-1, the cellulose-deficient mutant with misaligned microfibrils, had additive phenotypes. Our results suggest that cortical microtubules regulate growth anisotropy by some mechanism other than cellulose microfibril alignment or synthesis.  相似文献   

2.
Microtubules have long been known to play a key role in plant cell morphogenesis, but just how they fulfill this function is unclear. Transverse microtubules have been thought to constrain the movement of cellulose synthase complexes in order to generate transverse microfibrils that are essential for elongation growth. Surprisingly, some recent studies demonstrate that organized cortical microtubules are not essential for maintaining or re-establishing transversely oriented cellulose microfibrils in expanding cells. At the same time, however, there is strong evidence that microtubules are intimately associated with cellulose synthesis activity, especially during secondary wall deposition. These apparently conflicting results provide important clues as to what microtubules do at the interface between the cell and its wall. I hypothesize that cellulose microfibril length is an important parameter of wall mechanics and suggest ways in which microtubule organization may influence microfibril length. This concept is in line with current evidence that links cellulose synthesis levels and microfibril orientation. Furthermore, in light of new evidence showing that a wide variety of proteins bind to microtubules, I raise the broader question of whether a major function of plant microtubules is in modulating signaling pathways as plants respond to sensory inputs from the environment.  相似文献   

3.
The anisotropic growth of plant cells depends on cell walls having anisotropic mechanical properties, which are hypothesized to arise from aligned cellulose microfibrils. To test this hypothesis and to identify genes involved in controlling plant shape, we isolated mutants in Arabidopsis thaliana in which the degree of anisotropic expansion of the root is reduced. We report here the characterization of mutants at two new loci, RADIALLY SWOLLEN 4 (RSW4) and RSW7. The radial swelling phenotype is temperature sensitive, being moderate (rsw7) or negligible (rsw4) at the permissive temperature, 19 degrees C, and pronounced at the restrictive temperature, 30 degrees C. After transfer to 30 degrees C, the primary root's elongation rate decreases and diameter increases, with all tissues swelling radially. Swelling is accompanied by ectopic cell production but swelling is not reduced when the extra cell production is eliminated chemically. A double mutant was generated, whose roots swell constitutively and more than either parent. Based on analytical determination of acid-insoluble glucose, the amount of cellulose was normal in rsw4 and slightly elevated in rsw7. The orientation of cortical microtubules was examined with immunofluorescence in whole mounts and in semi-thin plastic sections, and the orientation of microfibrils was examined with field-emission scanning electron microscopy and quantitative polarized-light microscopy. In the swollen regions of both mutants, cortical microtubules and cellulose microfibrils are neither depleted nor disoriented. Thus, oriented microtubules and microfibrils themselves are insufficient to limit radial expansion; to build a wall with high mechanical anisotropy, additional factors are required, supplied in part by RSW4 and RSW7.  相似文献   

4.
Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, cortical microtubules lose transverse orientation and cells lose growth anisotropy without any change in the parallel arrangement of cellulose microfibrils. In this study, we investigated whether a pre-existing template of well-ordered microfibrils or the presence of well-organized cortical microtubules was essential for the cell to resume deposition of parallel microfibrils. We first transiently disrupted the parallel order of microfibrils in mor1-1 using a brief treatment with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). We then analysed the alignment of recently deposited cellulose microfibrils (by field emission scanning electron microscopy) as cellulose synthesis recovered and microtubules remained disrupted at the mor1-1 mutant's non-permissive culture temperature. Despite the disordered cortical microtubules and an initially randomized wall texture, new cellulose microfibrils were deposited with parallel, transverse orientation. These results show that transverse cellulose microfibril deposition requires neither accurately transverse cortical microtubules nor a pre-existing template of well-ordered microfibrils. We also demonstrated that DCB treatments reduced the ability of cortical microtubules to form transverse arrays, supporting a role for cellulose microfibrils in influencing cortical microtubule organization.  相似文献   

5.
The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that have lost the ability to expand unidirectionally as a result of disrupted microtubules. These conflicting findings suggest that microtubules are important for some physico-chemical property of cellulose that maintains wall integrity. Using X-ray diffraction, we demonstrate that abundant microtubules enable a decrease in the degree of wall crystallinity during rapid growth at high temperatures. Reduced microtubule polymer mass in the mor1-1 mutant at high temperatures is associated with failure of crystallinity to decrease and a loss of unidirectional expansion. Promotion of microtubule bundling by over-expressing the RIC1 microtubule-associated protein reduced the degree of crystallinity. Using live-cell imaging, we detected an increase in the proportion of CSCs that track in microtubule-free domains in mor1-1, and an increase in the CSC velocity. These results suggest that microtubule domains affect glucan chain crystallization during unidirectional cell expansion. Microtubule disruption had no obvious effect on the orientation of CMFs in dark-grown hypocotyl cells. CMFs at the outer face of the hypocotyl epidermal cells had highly variable orientation, in contrast to the transverse CMFs on the radial and inner periclinal walls. This suggests that the outer epidermal mechanical properties are relatively isotropic, and that axial expansion is largely dependent on the inner tissue layers.  相似文献   

6.
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

7.
We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized.  相似文献   

8.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

9.
Organ morphology depends on cell placement and directional cell expansion. Microtubules are involved in both of these processes so genetic approaches to understand the role microtubules play in organ expansion are not straightforward. Our use of the temperature-sensitive mor1-1 mutants led to the surprising discovery that Arabidopsis thaliana (L.) Heynh. root cells can establish and maintain transverse cellulose texture without well organized microtubule arrays. This work also demonstrated that cells can lose the ability to expand anisotropically without losing transversely oriented cellulose microfibrils. We suggest that microtubule disruption affects the cells ability to generate long cellulose microfibrils, which may be essential for achieving growth anisotropy. Thus organ shape may depend not only on the orientation but also on the relative length of cellulose microfibrils during axis establishment and growth. More recent work has shown an important correlation between microtubule organization and the deposition patterns of the glycosylphosphatidylinositol (GPI)-anchored wall protein COBRA. Loss of microtubule organization is associated with the dissipation of transverse banding patterns of COBRA, suggesting that COBRAs function in maintaining anisotropic expansion may be microtubule-dependent.  相似文献   

10.
Auxin-mediated elongation growth of isolated subapical coleoptile segments of maize (Zea mays L.) is controlled by the extensibility of the outer cell wall of the outer epidermis (Kutschera et al., 1987). Here we investigate the hypothesis that auxin controls the extensibility of this wall by changing the orientation of newly deposited microfibrils through a corresponding change in the orientation of cortical microtubules. On the basis of electron micrographs it is shown that cessation of growth after removal of the endogenous source of auxin is correlated with a relative increase of longitudinally orientated microfibrils and microtubules at the inner wall surface. Conversely, reinduction of growth by exogenous auxin is correlated with a relative increase of transversely orientated microfibrils and microtubules at the inner wall surface. These changes can be detected 30–60 min after the removal and addition of auxin, respectively. The functional significance of directional changes of newly desposited wall microfibrils for the control of elongation growth is discussed.  相似文献   

11.
S. C. Chafe  A. B. Wardrop 《Planta》1972,107(3):269-278
Summary The organization of the wall of epidermal cells in the petiole of species of Apium, Eryngium, Rumex, and Abutilon as well as that of the epidermis of Avena coleoptile has been investigated. The outer and inner tangential walls consist of layers in which the cellulose microfibrils are oriented alternately parallel or transverse to the longitudinal cell axis. This organization resembles that previously described for collenchyma cell walls (Wardrop, 1969; Chafe, 1970). On the radial (anticlinal) walls the orientation of the microfibrils is transverse and these appear continuous with the layers of transverse orientation of the outer and inner tangential walls. Variation in thickness of the outer tangential, and radial, and inner tangential walls appears to result from the variation in thickness of those layers in which the microfibrils have a longitudinal orientation. The extent to which these observations can interpreted in terms of some type of modified multi-net growth is discussed.  相似文献   

12.
Mutants at the BOTERO1 locus are affected in anisotropic growth in all non-tip-growing cell types examined. Mutant cells are shorter and broader than those of the wild type. Mutant inflorescence stems show a dramatically reduced bending modulus and maximum stress at yield. Our observations of root epidermis cells show that the cell expansion defect in bot1 is correlated with a defect in the orientation of the cortical microtubules. We found that in cells within the apical portion of the root, which roughly corresponds to the meristem, microtubules were loosely organized and became much more highly aligned in transverse arrays with increasing distance from the tip. Such a transition was not observed in bot1. No defect in microtubule organization was observed in kor-1, another mutant with a radial cell expansion defect. We also found that in wild-type root epidermal cells, cessation of radial expansion precedes the increased alignment of cortical microtubules into transverse arrays. Bot1 roots still show a gravitropic response, which indicates that ordered cortical microtubules are not required for differential growth during gravitropism. Interestingly, the fact that in the mutant, these major changes in microtubule organization cause relatively subtle changes in cell morphology, suggest that other levels of control of growth anisotropy remain to be discovered. Together, these observations suggest that BOT1 is required for organizing cortical microtubules into transverse arrays in interphase cells, and that this organization is required for consolidating, rather than initiating, changes in the direction of cell expansion.  相似文献   

13.
Two models of isolated epidermis were used to demonstrate that the net orientation of cellulose microfibrils in the cell wall is related to mechanical properties of the tissue, and can be used as an indicator for wall anisotropy. In the developing plant epidermis, cells expand in one or two directions in the plane of the plant surface. In epidermis cells actively expanding in one direction (elongation), the orientation of cortical microtubules closely matches the net cellulose orientation. In epidermis cells expanding in two directions, the orientation of the parallel microtubules does not coincide with the net cellulose orientation in the adjacent cell wall. The orientation of cortical microtubules is thus not always a reliable indicator of wall characteristics. In both types of epidermis, a high rate of expansion correlates with a high activity of xyloglucan endotransglycosylase (XET), as determinedin situ. This high activity alone cannot explain unidirectional wall expansion.  相似文献   

14.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   

15.
Summary Following a 5 hours ethylene treatment, cortical cells of Pea (Pisum sativum L. var Alaska) epicotyl third internode showed a change in the orientation of both microtubules near the plasma membrane and recently deposited cellulose microfibrils. Control cortical cells had mostly transverse microtubules. The ratio of the average frequency of transverse to longitudinal microtubules was 6.0. After 5 hours of ethylene treatment, cortical cells had mostly longitudinal microtubules, with the ratio of transverse to longitudinal microtubules equal to 0.1. Epidermal cells were more variable than cortical cells with regard to the frequency of longitudinal and transverse microtubules. Observation of cortical cell walls in conventionally stained thin sections revealed that recent deposition of microfibrils had been primarily transverse in almost all of the control cortical cells sampled. In contrast, more than half of the ethylene-treated cortical cells had recent deposition oriented primarily longitudinally. This change in microtubule and microfibril orientation may be early enough to constitute the primary effect of ethylene leading to radial cell expansion.Research supported by NSF grant PCM 78-03244, A1, 2 to PBG and by a Research Corporation grant to WRE.  相似文献   

16.
Microtubule cortical array organization and plant cell morphogenesis   总被引:1,自引:0,他引:1  
Plant cell cortical microtubule arrays attain a high degree of order without the benefit of an organizing center such as a centrosome. New assays for molecular behaviors in living cells and gene discovery are yielding insight into the mechanisms by which acentrosomal microtubule arrays are created and organized, and how microtubule organization functions to modify cell form by regulating cellulose deposition. Surprising and potentially important behaviors of cortical microtubules include nucleation from the walls of established microtubules, and treadmilling-driven motility leading to polymer interaction, reorientation, and microtubule bundling. These behaviors suggest activities that can act to increase or decrease the local level of order in the array. The SPIRAL1 (SPR1) and SPR2 microtubule-localized proteins and the radial swollen 6 (rsw-6) locus are examples of new molecules and genes that affect both microtubule array organization and cell growth pattern. Functional tagging of cellulose synthase has now allowed the dynamic relationship between cortical microtubules and the cell-wall-synthesizing machinery to be visualized, providing direct evidence that cortical microtubules can organize cellulose synthase complexes and guide their movement through the plasma membrane as they create the cell wall.  相似文献   

17.
John Gardiner  Jan Marc 《Protoplasma》2013,250(1):391-395
Both the cortical microtubule cytoskeleton and cellulose microfibrils are important for the anisotropic growth of plant cells. Although the two systems interact, the details of this interaction are far from clear. It has been shown the inhibitors of phospholipase D, phospholipase A2 and phospholipase C all cause disorganisation of the microtubule cytoskeleton. Since the phospholipases act on the plasma membrane, which links cortical microtubules to cellulose microfibrils in the cell wall, they may play a key role in the communication between the two structures. This communication may take various forms. Microtubule-linked phospholipase activity may cause the organisation of underlying cellulose microfibril liquid crystals. Alternatively, phospholipases may co-operate in the regulation of plasma membrane fluidity, affecting the movement of cellulose synthase complexes in the underlying plasma membrane. GPI-anchored proteins in the plasma membrane, which are cleaved by phospholipases, may possibly play a role.  相似文献   

18.
Elongation of diffusely expanding plant cells is thought to be mainly under the control of cortical microtubules. Drug treatments that disrupt actin microfilaments, however, can reduce elongation and induce radial swelling. To understand how microfilaments assist growth anisotropy, we explored their functional interactions with microtubules by measuring how microtubule disruption affects the sensitivity of cells to microfilament-targeted drugs. We assessed the sensitivity to actin-targeted drugs by measuring the lengths and diameters of expanding roots and by analysing microtubule and microfilament patterns in the temperature-sensitive Arabidopsis thaliana mutant microtubule organization 1 (mor1-1), along with other mutants that constitutively alter microtubule arrays. At the restrictive temperature of mor1-1, root expansion was hypersensitive to the microfilament-disrupting drugs latrunculin B and cytochalasin D, while immunofluorescence microscopy showed that low doses of latrunculin B exacerbated microtubule disruption. Root expansion studies also showed that the botero and spiral1 mutants were hypersensitive to latrunculin B. Hypersensitivity to actin-targeted drugs is a direct consequence of altered microtubule polymer status, demonstrating that cross-talk between microfilaments and microtubules is critical for regulating anisotropic cell expansion.  相似文献   

19.
In dark-grown hypocotyls of the Arabidopsis procuste mutant, a mutation in the CesA6 gene encoding a cellulose synthase reduces cellulose synthesis and severely inhibits elongation growth. Previous studies had left it uncertain why growth was inhibited, because cellulose synthesis was affected before, not during, the main phase of elongation. We characterised the quantity, structure and orientation of the cellulose remaining in the walls of affected cells. Solid-state NMR spectroscopy and infrared microscopy showed that the residual cellulose did not differ in structure from that of the wild type, but the cellulose content of the prc-1 cell walls was reduced by 28%. The total mass of cell-wall polymers per hypocotyl was reduced in prc-1 by about 20%. Therefore, the fourfold inhibition of elongation growth in prc-1 does not result from aberrant cellulose structure, nor from uniform reduction in the dimensions of the cell-wall network due to reduced cellulose or cell-wall mass. Cellulose orientation was quantified by two quantitative methods. First, the orientation of newly synthesised microfibrils was measured in field-emission scanning electron micrographs of the cytoplasmic face of the inner epidermal cell wall. The ordered transverse orientation of microfibrils at the inner face of the cell wall was severely disrupted in prc-1 hypocotyls, particularly in the early growth phase. Second, cellulose orientation distributions across the whole cell-wall thickness, measured by polarised infrared microscopy, were much broader. Analysis of the microfibril orientations according to the theory of composite materials showed that during the initial growth phase, their anisotropy at the plasma membrane was sufficient to explain the anisotropy of subsequent growth.  相似文献   

20.
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号