首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
等径弯角挤压法制备的TiNi合金的摩擦学性能   总被引:1,自引:0,他引:1  
采用先进的等径弯角挤压(ECAE)技术对热锻态Ti-50.6%Ni(原子分数)合金进行加工处理,研究了挤压后TiNi合金的伪弹性能及摩擦学性能,探讨了ECAE对TiNi合金摩擦学性能的影响.实验结果表明:高温等径弯角挤压工艺处理显著提高了TiNi合金的摩擦学性能,摩擦系数从0.141下降至0.06左右,磨损量也显著降低.这主要是由于经过等径弯角挤压工艺处理后,TiNi合金的显微组织得到细化,且有弥散、细小的Ti4Ni4第二相析出,对基体起到了强化作用;TiNi合金可恢复应变率从40%增大到63%,改善了TiNi合金的伪弹性能,增强了TiNi合金在摩擦磨损过程中的弹性变形能力,减少了塑性变形,从而提高了TiNi合金的摩擦学性能.通过扫描电子显微镜对TiNi合金磨损后表面形貌的观察发现:原始TiNi合金呈现了明显的磨粒磨损特征,且伴随有大块磨粒剥落和横向裂纹;而经过等径弯角挤压处理后TiNi合金的磨损表面较光滑、平整,呈现较轻微的磨粒磨损特征.  相似文献   

2.
摩擦阻力对纯铝在等径弯角挤压过程中变形的影响   总被引:1,自引:0,他引:1  
室温下对纯铝试样进行了等径弯角挤压(ECAE),通过对挤压后纯铝试样的宏观变形及微观形貌分析,探讨了ECAE过程中模具内壁与试样之间的摩擦阻力对试样变形的影响,得到了滞变区比例与挤压位移之间的关系.结果表明:挤压过程中试样在模具通道内角点附近形成难变形区;在模具通道外角点形成变形死区;试样的芯部变形比较均匀,为明显的剪切变形;受摩擦阻力的影响,试样顶部和底部均出现了滞变区,该区域呈轴对称分布且沿试样长度方向逐渐向试样芯部扩展;滞变区比例随挤压的进行而增大.  相似文献   

3.
NiTi合金等径弯角挤压工艺及晶粒细化   总被引:1,自引:0,他引:1  
针对NiTi合金的等径弯角挤压(ECAE)工艺及对晶粒的细化效果进行了研究,对该合金在温度为700、750、850、950℃,挤压速率为25 mm/s非等温条件下的ECAE过程进行了试验.在非等温条件下,利用ECAE技术实现了大块材镍钛合金材料的晶粒细化.研究表明,在热加工条件下,锻态NiTi合金的原始粗大晶粒经一次挤压后均可以得到细化,而且细化的程度近似相等.但不同加热温度下的后续挤压对合金晶粒的细化效果却有显著的不同.  相似文献   

4.
摘要: 考察了经等径角挤压(ECAE)处理前后的Ti5553合金在含泥沙海水环境中的冲蚀磨损特性,采用扫描电子显微镜观察冲蚀磨损后的试样表面形貌并结合MATLAB软件进行定量分析,探讨了Ti5553合金显微组织、力学性能及冲蚀机理的演变对其冲蚀磨损性能的影响.结果表明:经ECAE处理后,Ti5553合金的抗冲蚀磨损性能明显提高,这是由于ECAE工艺能够通过细晶强化而提高Ti5553合金的强度与韧塑性、改善其微观组织所致;未经ECAE处理的Ti5553合金的冲蚀磨损机理为冲击变形及犁沟剥落,并伴随大面积划痕和冲击坑裂纹的产生,而经ECAE处理的Ti5553合金的冲蚀机理为轻微冲击变形及犁沟剥落,划痕和冲击坑裂纹的扩展趋势不明显.  相似文献   

5.
等径角挤压对纯铜组织与性能的影响   总被引:1,自引:0,他引:1  
研究采用BC路径(即试样进入下一道次挤压时按同一方向旋转90°)对纯铜进行等径角挤压后得到的组织与性能.结果表明,通过室温下对纯铜的8道次挤压后,得到均匀、细小的等轴晶组织(晶粒尺寸约1.5μm).抗拉强度从原来的235 MPa提高到420 MPa,硬度从114 HV提高到184.3 HV,延伸率由原来的45%降低到19%.通过对不同挤压道次试样在473 K下60 min的退火处理后,其晶粒进一步细化至1μm,其抗拉强度提高到435 MPa.  相似文献   

6.
内高压成形技术作为实现结构轻量化的先进塑性成形技术,在国外企业和科研单位中已经得到了广泛地应用;等径角挤压技术作为获得超细晶结构材料的重要手段,发展也很迅速。但是目前关于这2项技术专用设备的研究很少,且由于设备投资巨大,在我国的发展很缓慢;文章在分析内高压和等径角挤压成形工艺的基础上,设计了针对这2种成形方法的专用设备的液压系统原理。  相似文献   

7.
对采用等径角挤压(ECAE)工艺前后AZ31镁合金板材的性能参数和冲压成形性能进行了研究.结果表明,经过等径角挤压工艺处理后镁合金板材的应变硬化指数n值、各向异性r值和极限拉深比LDR值均得到了优化,从而改善了镁合金板材的冲压性能.  相似文献   

8.
针对粉末材料低塑性的特点,在室温条件下采用包套-等径角挤压工艺(PITS-ECAP)将纯铜粉末颗粒直接固结成高致密度块体细晶材料.结果表明,包套-等径角挤压工艺对粉末材料具有有效的致密和细化效果.4道次PITS-ECAP工艺变形后,试样X、Y、Z面均受到剧烈剪切作用,晶粒尺寸得到明显细化,显微组织呈细长条带流线状,且分布较为均匀;试样整体组织达到完全致密,平均显微硬度高达1 470 MPa.在PITSECAP工艺变形过程中,剧烈塑性剪切变形、较高静水压力和有效应变积累是保证粉末材料致密度大幅度提高以及显微组织有效细化的主要原因.  相似文献   

9.
研究材料微观组织的演化对应力、应变以及应变硬化等问题的影响,是实现等径角挤压成形技术的关键.以纯铝为例,基于位错演化模型,利用有限元分析方法对纯铝的等径角挤压变形行为进行了数值仿真,分析了挤压过程中材料应力、应变以及应变硬化的演化趋势及分布规律.结果表明:随着挤压道次增加,纯铝中等效应力逐渐增加,这导致材料中位错密度的增加;随着位错密度的增加,主应变最大值随后续挤压道次的增加呈增大趋势.因此,考虑等径角挤压过程中的位错演化等材料微观组织演化规律,对材料的实际挤压成形有指导作用.  相似文献   

10.
等通道转角挤压技术是目前制备超细晶粒金属块材的最新研究领域之一.本实验采用了等通道转角挤压技术对3种商业铝合金以A、B、C等3种方式挤压,结果表明:3种挤压方式后的硬度与挤压道次的关系基本一致,即3~4次挤压后硬度趋于饱和;应用的负荷大小对ECAP期间剥落的可能性也被测量,以便改善挤压过程.X-射线衍射分析法显示挤压后这些铝合金出现亚微米级晶粒尺寸.本实验中,经不同方式等通道转角挤压(ECAP)铝合金组织结构变化有较大不同,晶粒得到明显细化.  相似文献   

11.
等通道转角挤压对铝青铜合金组织及摩擦学性能的影响   总被引:1,自引:0,他引:1  
对铝青铜合金(Cu-10%Al-4?)进行了等通道转角挤压(ECAE)热加工处理,研究了ECAE对合金微观组织、力学性能及摩擦学性能的影响.结果表明:ECAE热挤压后合金的晶粒显著细化,晶粒尺寸随着挤压道次的增加而逐步减小;晶粒细化导致合金的硬度与屈服强度显著增加,提高了合金抵抗塑性变形能力,减轻了磨粒对合金表面的犁削作用;ECAE热挤压细化了合金中的第二相,减小了脱落硬质颗粒压入合金表面的深度与宽度,降低了合金的磨损量,提高了合金的摩擦学性能.  相似文献   

12.
等通道转角挤压对铝青铜力学性能的影响   总被引:1,自引:0,他引:1  
采用等通道转角挤压(ECAE)工艺对铝青铜(Cu 10%Al 4%Fe)进行热处理,研究了ECAE处理工艺中预热温度、挤压道次及退火处理对铝青铜外观形貌、微观组织及力学性能的影响.结果表明:在650 °C的预热温度下,铝青铜可以顺利通过ECAE挤压通道;随着ECAE挤压道次从1增至4,铝青铜的显微硬度、屈服强度及延伸率显著增加;经500 °C退火60 min处理后,铝青铜的力学性能最佳.  相似文献   

13.
两步等通道角挤压AZ31镁合金的微观组织和力学性能   总被引:4,自引:0,他引:4  
对AZ31镁合金经等通道角挤压(ECAE)变形后的微观组织和力学性能进行了研究.结果表明:在498-523K温度范围内变形后,合金晶粒随着变形程度增加明显细化,延伸率提高,但屈服强度降低;随着变形温度降低,变形后合金的延伸率下降,而屈服强度有所提高.基于以上两点规律提出了两步ECAE工艺,在两步ECAE变形过程中,AZ31合金的变形温度可以降低至453K,经两步ECAE变形后,获得亚微米级的亚结构AZ31镁合金的强韧性随之得到明显的改善.  相似文献   

14.
该文研究平面简单切变过程中切应变的计算。从无穷小变形条件下应变的定义出发,提出了大变形时真实切应变的概念。对切应变主轴不变的平面简单切变过程,通过无穷小应变的积分,导出了真实切应变计算公式。将该公式应用于等径弯曲通道变形中真应变的计算,与直接分析试件的几何变形得出的计算公式完全相同,而且与实验测定的真实等效应变吻合很好。  相似文献   

15.
模具外接圆弧角对纯铝ECAE影响的有限元分析   总被引:5,自引:0,他引:5  
运用有限元方法对纯铝的等径弯角挤压(ECAE)过程进行了模拟计算,探讨了挤压通道外接圆弧角φ对挤压载荷及试样变形均匀度的影响.结果表明:随着φ角的增加,通道壁支反力的水平分量随之增大,有助于试样的变形流动,从而降低挤压载荷的大小;试样在剪切变形区所受到的滑动摩擦力也随φ角的增加而增大.同时,由于φ弧段的存在,试样底部产生弯曲变形而形成不均匀变形区。均使等效应变分布的不均匀度增加.  相似文献   

16.
低碳钢等径弯曲通道变形数值模拟及组织分析   总被引:4,自引:0,他引:4  
对低碳钢等径弯曲通道变形进行了数值模拟,并分析了它的显微组织.通过有限元数值模拟,获得了低碳钢成形等径弯曲通道变形载荷的变化规律和等效应变分布规律.载荷模拟结果表明,摩擦因子越大,变形载荷也越大,当摩擦因子为0.408时,其成形载荷约为无摩擦时的2.1倍,载荷数值模拟与实验结果基本相吻合.此外,结合所揭示的等效应变分布特点,对一道次等径弯曲通道变形后试样横截面上的微观组织分布进行了分析,表明下表面处的材料晶粒细化程度比上表面处的大,因此这种分布特点与等效应变分布是相互一致的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号