首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomechanical comparison of spondylolysis fixation techniques   总被引:10,自引:0,他引:10  
Deguchi M  Rapoff AJ  Zdeblick TA 《Spine》1999,24(4):328-333
STUDY DESIGN: A load-controlled biomechanical analysis of flexion, extension, and torsional stiffness in instrumented calf spines. OBJECTIVES: To compare biomechanically the performance of various fixation techniques for the repair of spondylolytic defects in the pars interarticularis. SUMMARY OF BACKGROUND DATA: Several techniques have been developed to stabilize a spondylolytic defect in the lumbar spine. There are, however, no comprehensive biomechanical studies in which these techniques are compared. METHODS: Nine fresh-frozen and thawed calf cadaveric lumbar L2-L6 spines were used for mechanical testing. Scott's technique, Buck's technique (screw fixation in the lamina across the defects), modified Scott's technique (wire loops around cortical screws placed into both pedicles and tightened under the spinous process), and screw-rod-hook fixation were applied on the calf lumbar spines in which bilateral spondylolytic defects were created in the L4 vertebra. Motion across the defects for each direction of loading in flexion, extension, and rotation was measured using extensometers. The intervertebral rotations and the strain at the site of the spondylolytic defect were computed from the acquired load-displacement data. RESULTS: Each fixation technique significantly increased stiffness and returned the intervertebral rotational stiffness to nearly intact levels. Displacement across the defect under flexion loading was significantly suppressed by each instrumentation technique, but the least motion (P < 0.05) was allowed with the screw-rod-hook fixation or Buck's technique. CONCLUSIONS: All four fixation techniques restored the intervertebral rotational displacements under flexion and torsional loading to the intact condition. The screw-rod-hook fixation allowed the least amount of motion across the defect during flexion.  相似文献   

2.
Objective : To evaluate the biomechanical effect and clinical results of hook screw fixation after direct repair of lumbar spondylous defects in the pars interarticularis. Methods: L2-L6 spines of 8 fresh-frozen and thawed calf cadavers were used for mechanical testing. Bilateral spondylous defects were created in the L4 vertebra. The intervertebral rotation ranges between L4 and L5 were scanned and computerized in various states of motion, such as flexion/extension, lateral bending and torsional loadings applied on the intact spine and the spondylous spine when the spondylous spine was fixed with modified Scott' s fixation, hook screw fixation and Buck ' s fixation sequentially and respectively. Between July 2002 and February 2004, 14 young male patients (aged 15-31 years) suffering from symptomatic lumbar spondylolysis were treated with TSRH hook screw fixation after direct repair of the defects. MacNab criteria were used to assess their pre-and post-operative status. Results: Each fixation technique could significantly increase the intervertebral rotational stiffness and made the stiffness return to nearly the intact level. Hook screw technique provided more rotational stability than the others. Hook screw and Buck' s techniques provided more flexion/extension stability than modified Scott' s technique. Neither complication nor instrumental failure was observed in this study. The mean follow-up period was 21 months. All the patients except one acquired union during the follow-up period. Thirteen patients had a“good”or“excellent”result according to MacNab criteria. Conclusions: Hook screw fixation shows biomechanical advantages and is safe and effective for young patients with lumbar spondylolysis.  相似文献   

3.

Purpose

Transfacet screws have been used as an alternative posterior fixation in the cervical spine. There is lack of spinal stability of the transfacet screws either as stand-along constructs or combined with anterior plate. This study was designed to evaluate spinal stability of transfacet screws following posterior ligamentous injury and combined with anterior plate, respectively, and compare transfacet screws to lateral mass screw-rod constructs.

Methods

Flexibility tests were conducted on eight cadaveric specimens in an intact and injury, and instrumented with the transfacet screw fixation and lateral mass screw-rod construct at C5–C7 levels either after section of the posterior ligamentous complex or combined with an anterior plate and a mesh cage for C6 corpectomy reconstruction. A pure moment of ±2.0 Nm was applied to the specimen in flexion–extension, lateral bending, and axial rotation. Ranges of motion (ROM) were calculated for the C5–C7 segment.

Results

ROM with the transfacet screws was 22 % of intact in flexion–extension, 9 % in lateral bending and 11 % in axial rotation, while ROM with the lateral mass screw-rod construct was 9 % in flexion–extension, 8 % in lateral bending and 22 % in axial rotation. The only significant difference between two constructs was seen in flexion–extension (5.8 ± 4.2° vs. 2.4 ± 1.2°, P = 0.002). When combined with an anterior plate and mesh cage, the transfacet screw fixation reduced ROM to 3.0° in flexion–extension, 1.2° in lateral bending, and 1.1° in axial rotation, which was similar to the lateral mass screw-rod construct.

Conclusions

This study identified the transfacet screw fixation, as stand-alone posterior fixation, was equivalent to the lateral mass screw-rod constructs in axial rotation and lateral bending except in flexion–extension. When combined with an anterior plate, the transfacet screw fixation was similar to the lateral mass screw-rod construct in motion constraint. The results suggested the transfacet screw fixation a biomechanically effective way as supplementation of anterior fixation.
  相似文献   

4.
Biomechanical comparison of plates and rods in the unstable thoracic spine   总被引:3,自引:0,他引:3  
Thoracic spine stabilization after trauma or in tumor reconstruction cases frequently is performed with hook and rod internal fixation systems, the use of which is not always possible. Pelvic reconstruction plates with pedicle screw fixation offer an alternative to hooks and rods. In this study, we biomechanically compared a plate construct with a hook and rod system in an acute postoperative, unstable thoracic spine model. We found that the hook and rod system offered more resistance to flexion and extension bending than the plate construct; the opposite was true for lateral bending and axial torsion. We further determined that the addition of pars interarticularis screws to the plate construct provided increased resistance to all loading modes. Our study indicates that plate constructs can effectively stabilize the thoracic spine.  相似文献   

5.
目的研究后路寰椎侧块螺钉联合枢椎椎板钩内固定的生物力学稳定性。方法取6例新鲜尸体颈椎标本,每具标本分别依次进行完整(正常组)、寰枢椎不稳(失稳组)、寰枢侧块螺钉联合枢椎椎弓根螺钉钉棒固定(Harms组)、寰椎侧块螺钉联合枢椎椎板钩固定(钉钩组)状态的生物力学测试,每组6个标本,将各标本装载在脊柱三维运动机上,分别施予1.5 N·m力矩,记录标本在前屈后伸、左右侧曲、左右旋转3个方向上的活动度(ROM),比较各组ROM。结果相对于正常组标本,失稳组标本在上述3个方向上的ROM显著增大;相较于正常和失稳组标本,Harms组和钉钩组的标本在上述3个方向上ROM显著减小;钉钩组与Harms组间在上述3个方向的ROM差异无统计学意义(P0.05)。结论后路寰椎侧块螺钉联合枢椎椎板钩内固定在生物力学稳定性上与Harms固定相似,可以起到良好的固定效果。  相似文献   

6.
目的:构建椎管重建内固定术的有限元模型,并分析椎管重建内固定术对脊柱稳定性的影响,验证椎管重建内固定术在椎管内手术中的有效性和可靠性。方法:筛选1名30岁男性,身高172 cm,体重75 kg的健康志愿者并采集其腰椎CT资料,建立正常腰椎L3-L5的有限元模型,并与体外实体结果和已发表的有限元分析结果进行比较,以验证该模型的有效性。根据处理方式不同分为正常组、椎板切除组和椎管重建组。在相同边界固定和生理载荷条件下,实施前屈、后伸、左弯、右弯、左旋和右旋6种工况活动,分析6种工况活动下L3-L4和L4-L5观察节段的活动度(range of motion,ROM)和L3-L5整体最大ROM的变化情况。结果:构建的L3-L5有限元模型各节段ROM位移与体外实体结果和既往文献数据结果吻合,确认了该模型的有效性。在L3-L4中,椎管重...  相似文献   

7.
下颈椎经关节螺钉钢板固定的生物力学研究   总被引:1,自引:1,他引:0  
目的:研究下颈椎单独经关节螺钉固定与经关节螺钉钢板固定的三维稳定性之间的差异。方法:12具新鲜人体颈椎标本,制成C4,5、C5,6节段三柱损伤模型。随机选取6具标本在C4,5、C5,6行单独经关节螺钉固定,另6具标本在C4,5、C5,6行经关节螺钉钢板固定。在非限制性和非破坏性的试验条件下测试它们在前屈、后伸、左右侧弯和轴向旋转运动状态的稳定性,分别测试标本损伤模型制作前完整标本组(A组)、单独经关节螺钉固定组(B组)和螺钉钢板组(C组)3组数据。结果:单独经关节螺钉固定组和经关节螺钉钢板固定组在各方向的运动范围(ROM)和中性区(NZ)的均数均小于完整标本组,差异有统计学意义(P0.05)。经关节螺钉钢板固定在前屈运动中的ROM和NZ与单独经关节螺钉固定比较,差异无统计学意义(P0.05);在后伸、左右侧弯和轴向旋转运动中,经关节螺钉钢板固定的稳定性优于单独经关节螺钉固定,差异有统计学意义(P0.05)。结论:下颈椎经关节螺钉钢板固定的稳定性优于单独经关节螺钉固定,在使用下颈椎经关节螺钉时,相对于单独螺钉固定,建议以螺钉钢板形式固定。  相似文献   

8.
The intralaminar screw construct has been recently introduced in C6–C7 fixation. The aim of the study is to compare the stability afforded by three different C7 posterior fixation techniques using a three-dimensional finite element model of a C6–C7 cervical spine motion segment. Finite element models representing three different cervical anchor types (C7 intralaminar screw, C7 lateral mass screw, and C7 pedicle screw) were developed. Range of motion (ROM) and maximum von Mises stresses in the vertebra for the three screw techniques were compared under pure moments in flexion, extension, lateral bending, and axial rotation. ROM for pedicle screw construct was less than the lateral mass screw construct and intralaminar screw construct in the three principal directions. The maximum von Misses stress was observed in the C7 vertebra around the pedicle in all the three screw constructs. Maximum von Mises stress in pedicle screw construct was less than the lateral mass screw construct and intralaminar screw construct in all loading modes. This study demonstrated that the pedicle screw fixation is the strongest instrumentation method for C6–C7 fixation. Pedicle screw fixation resulted in least stresses around the C7 pedicle-vertebral body complex. However, if pedicle fixation is not favorable, the laminar screw can be a better option compared to the lateral mass screw because the stress around the pedicle-vertebral body complex and ROM predicted for laminar screw construct was smaller than those of lateral mass screw construct.  相似文献   

9.
Oda I  Abumi K  Sell LC  Haggerty CJ  Cunningham BW  McAfee PC 《Spine》1999,24(22):2377-2382
STUDY DESIGN: The stabilizing effects of five different occipitocervical fixations were compared. OBJECTIVES: To evaluate the construct stability provided by five different occipito-atlanto-axial fixation techniques. SUMMARY OF BACKGROUND DATA: Few studies have addressed occipitocervical reconstruction stability and no studies to data have investigated anterior-posterior translational stiffness. METHODS: A total of 21 human cadaveric spines were used. After testing intact spines (CO-C2), a type II dens fracture was created and five different reconstructions were performed: 1) occipital and sublaminar wiring/rectangular rod, 2) occipital screws and C2 lamina claw hooks/rod, 3) occipital screws, foramen magnum screws, and C1-C2 transarticular screws/rod, 4) occipital screws and C1-C2 transarticular screws/Y-plate, and 5) occipital screws and C2 pedicle screws/rod. Biomechanical testing parameters included axial rotation, flexion/extension, lateral bending, and anterior-posterior translation. RESULTS: Pedicle screw fixation demonstrated the highest stiffness among the five reconstructions (P < 0.05). The two types of transarticular screw methods provided greater stability than hook or wiring reconstructions (P < 0.05). The C2 claw hook technique resulted in greater stability than sublaminar wiring fixation in anterior-posterior translation (P < 0.05). However, the wiring procedure did not significantly increase the stiffness levels beyond the intact condition under anterior-posterior translation and lateral bending (P > 0.05). DISCUSSION: C2 transpedicular and C1-C2 transarticular screws significantly increased the stabilizing effect compared to sublaminar wiring and lamina hooks. The improved stability afforded by C2 pedicular and C1-C2 transarticular screws offer many potential advantages including a high rate of bony union, early ambulation, and easy nursing care. CONCLUSION: Occipitocervical reconstruction techniques using C1-C2 transarticular screws or C2 pedicle screws offer biomechanical advantages compared to sublaminar wiring or lamina hooks. Pedicle screw fixation exhibited the highest construct stiffness among the five reconstructions.  相似文献   

10.
BACKGROUND CONTEXT: Locking posterior instrumentation in the cervical spine can be attached using 1) pedicle screws, 2) lateral mass screws, or 3) laminar hooks. This order of options is in order of decreasing technical difficulty and decreasing depth of fixation, and is thought to be in order of decreasing stability. PURPOSE: We sought to determine whether substantially different biomechanical stability can be achieved in a two-level construct using pedicle screws, lateral mass screws, or laminar hooks. Secondarily, we sought to quantify the differential and additional stability provided by an anterior plate. STUDY DESIGN: In vitro biomechanical flexibility experiment comparing three different posterior constructs for stabilizing the cervical spine after three-column injury. METHODS: Twenty-one human cadaveric cervical spines were divided into three groups. Group 1 received lateral mass screws at C5 and C6 and pedicle screws at C7; Group 2 received lateral mass screws at C5 and C6 and laminar hooks at C7; Group 3 received pedicle screws at C5, C6, and C7. Specimens were nondestructively tested intact, after a three-column two-level injury, after posterior C5-C7 rod fixation, after two-level discectomy and anterior plating, and after removing posterior fixation. Angular motion was recorded during flexion, extension, lateral bending, and axial rotation. Posterior hardware was subsequently failed by dorsal loading. RESULTS: Laminar hooks performed well in resisting flexion and extension but were less effective in resisting lateral bending and axial rotation, allowing greater range of motion (ROM) than screw constructs and allowing a significantly greater percentage of the two-level ROM to occur across the hook level than the screw level (p<.03). Adding an anterior plate significantly improved stability in all three groups. With combined hardware, Group 3 resisted axial rotation significantly worse than the other groups. Posterior instrumentation resisted lateral bending significantly better than anterior plating in all groups (p<.04) and resisted flexion and axial rotation significantly better than anterior plating in most cases. Standard deviation of the ROM was greater with anterior than with posterior fixation. There was no significant difference among groups in resistance to failure (p=.74). CONCLUSIONS: Individual pedicle screws are known to outperform lateral mass screws in terms of pullout resistance, but they offered no apparent advantage in terms of construct stability or failure of whole constructs. Larger standard deviations in anterior fixation imply more variability in the quality of fixation. In most loading modes, laminar hooks provided similar stability to lateral mass screws or pedicle screws; caudal laminar hooks are therefore an acceptable alternative posteriorly. Posterior two-level fixation is less variable and slightly more stable than anterior fixation. Combined instrumentation is significantly more stable than either anterior or posterior alone.  相似文献   

11.
目的:基于影像学参数设计一种新型后路寰枢椎固定系统,运用有限元方法评价该系统固定的生物力学稳定性。方法:运用医学影像存档与通信系统测量工具对后弓发育正常且结构完整的成人寰椎CT进行解剖学参数测量,依据寰椎影像学测量参数设计出一种符合寰椎解剖结构的新型后路寰枢椎固定系统。对1例健康志愿者上颈椎进行薄层CT扫描,对其CT图片数字图像处理,进行网格划分、设置材料属性及载荷与边界条件,建立正常上颈椎有限元模型(正常模型),并与已发表文献对比验证其有效性;在正常模型基础上通过修改材料属性及去除横韧带构建寰枢椎失稳有限元模型(失稳模型),加载新型后路寰枢椎内固定系统至失稳模型上建立新型后路寰枢椎固定系统固定有限元模型(新型模型);运用Abaqus 2019对新型模型施加扭矩为1.5N·m,对该模型C0-C3节段屈伸、侧屈、旋转活动度进行计算分析,并与寰枢椎椎弓根螺钉固定有限元模型(椎弓根螺钉模型)对比。结果:设计出的新型后路寰枢椎固定系统符合寰椎的解剖结构,此系统由新型寰椎后弓钢板、连接棒及枢椎椎弓根螺钉组成。与以往文献对比,建立的正常模型验证有效。新型模型与正常模型相比减少了屈伸95.3%、侧屈92.6%、旋转99.0%的活动度,在各状态明显减少置入节段(C1-2)的活动度。有限元分析得出新型模型在屈伸、侧屈、旋转状态下C1-2节段活动度分别为1.10°、0.49°、0.59°,与椎弓根螺钉模型活动度相近;新型模型C2/3椎间盘最大应力在前屈、后伸、左侧屈、右侧屈、左旋转、右旋转状态下分别为3.71MPa、5.84MPa、3.09MPa、3.43MPa、2.65MPa、3.59MPa,与正常模型最大应力一致;新型后路寰枢椎固定系统固定的应力主要集中于枢椎椎弓根螺钉根部及连接棒。结论:新型后路寰枢椎固定系统固定具有良好的生物力学稳定性,可作为寰枢椎失稳内固定的补充方式。  相似文献   

12.
Objective:To investigate the stability and three-dimensional movements of the atlantoaxial joint after artificial atlanto-odontoid joint (AAOJ) arthroplasty by comparing with a conventional method.Meth...  相似文献   

13.
目的 分析对模拟双节段腰椎后路椎体间融合术(PLIF)采用单侧椎弓根钉固定(单侧固定)的生物力学稳定性.方法 将6具新鲜成人尸体腰椎标本(L2~S2)分别制备成L4~S1的PLIF模型,应用MTS 858实验机模拟产生屈伸、侧弯、轴向旋转,并按初始状态、单侧不稳、单侧不稳-单侧固定、双侧不稳-单侧固定、双侧不稳-双侧固定、双侧不稳的顺序进行测试,动态摄取记录各个节段角位移运动范围(ROM)与中性区值(NZ).结果 单侧不稳-单侧固定屈伸、侧弯、轴向旋转方向ROM值依次为2.53±1.12、4.03±2.19、2.78±1.00,NZ值依次为1.14±0.70、1.96±1.13、1.28±0.71,均显著小于初始状态(P<0.05),相比双侧不稳-双侧固定,各方向ROM与NZ值分别增加60.13%与17.52%、315.46%与243.86%、8.17%与6.20%,但差异无统计学意义(P>0.05).双侧不稳-单侧固定侧弯与旋转状态ROM与NZ值较双侧不稳-双侧固定显著增加(P<0.05).结论 单侧固定对人腰椎标本模拟双节段单侧PLIF可提供与双侧固定相似的生物力学稳定性,而对于模拟双节段双侧PLIF则单侧固定在大多数三维运动方向上不能提供足够的力学稳定性.
Abstract:
Objective To analyze the biomechanical efficacy of unilateral pedicle screw fixation on human cadaveric lumbar spine model simulated by two-level posterior lumbar interbody fusion (PLIF). Methods Six fresh-frozen adult human cadaveric lumbar spine motion segments (L2-S2) were simulated to unilateral/bilateral L4-S1 PLIF constructs augmented by unilateral/bilateral pedicle screw fixation sequentially and respectively. All configurations were tested by MTS 858 in the following sequential construct order: the intact, UI (unilateral instability), UIUF1C (unilateral instability via unilateral pedicle screw fixation plus one cage) , BIUF1C (bilateral instability via unilateral pedicle screw fixation plus one cage) , BIBF1C (bilateral instability via bilateral pedicle screw fixation plus one cage) and BI (bilateral instability without pedicle screw and cage). Each specimen was nondestructively tested in flexion/extension, lateral performed between different simulated constructs with One Way of ANOVA and Post hoc LSD tests. Results BIBF1C had the lowest ROM and NZ of L4-S1 fusion segments in all loading models, which were significantly lower than those of any uninstmmented construct (the intact, UI and BI) (P < 0. 05). In flexion/extension, lateral bending, and axial rotation, the ROM of UIUF1C was respectively 2.53 ± 1. 12, 4.03 ± 2. 19, 2. 78 ±1.00 and the NZ of UIUF1C was respectively 1.14 ±0.70, 1.96 ±1. 13, 1.28 ±0.71, which were significantly lower than those of the intact (P <0. 05). Compared to BIBF1C, the ROM and NZ were respectively increased 60.13% and 17.52% in flexion/extension, 315.46% and 243.86% in lateral bending, 8. 17% and 6. 20% in axial rotation, however, there were no significant differences between these two constructs (P > 0. 05). In lateral-bending and axial rotation, the ROM and NZ of BIUF1C were significantly higher than those of BIBF1C (P < 0. 05). In flexion/extension, the ROM and NZ of BIUF1C were higher than those of BIBF1C but there were no significant differences (P >0. 05). Compared to the intact, BIUF1C had lower ROM and NZ except for higher NZ in axial rotation, and there were significant differences only in flexion/extension (P < 0. 05). Conclusions All tested two-level unilateral fixation on simulated human cadaveric model with unilateral PLIF can achieve similar initial biomechanical stability in comparison with two-level bilateral pedicle screw fixation. However in most test modes, two-level unilateral pedicle screw fixation on simulated human cadaveric model with bilateral PLIF can not achieve enough biomechanical efficacy in comparison with two-level bilateral pedicle screw fixation.  相似文献   

14.
目的通过研究后方双侧斜向螺钉,轴向螺钉联合后方双侧斜向螺钉和椎弓根螺钉钉棒系统3种内固定方式的生物力学性能,探索轴向螺钉联合后方双侧斜向螺钉是否满足L5/S1内固定生物力学稳定性的要求。方法取9具成人新鲜尸体腰椎标本(生前无脊柱疾病史),进行骨密度测量,排除骨质疏松病变;并进行X线扫描,排除解剖学异常。剔除标本上的肌肉组织,保留椎间盘、韧带及骨性结构的完整性。将标本随机分为后方双侧斜向螺钉组(A组)、轴向螺钉联合后方双侧斜向螺钉组(B组)及椎弓根螺钉钉棒系统组(C组)。用牙托粉对标本L5和S1端椎体部分包埋,在生物力学机上完成前屈后伸、左右侧曲及轴向旋转实验。记录施加载荷时椎体前屈后伸、左右侧曲条件下的位移和轴向旋转的角度,完成9具标本的测试与记录。所有的测量数据应用SPSS 19.0软件进行统计学分析。结果在前屈后伸实验中,载荷范围内3组椎体的位移随载荷的增加而增加,在最大载荷下各组间差异有统计学意义(P0.05)。进行两两比较发现,A组和B组差异有统计学意义(P0.05),A组和C组差异有统计学意义(P0.05),B组和C组差异无统计学意义(P0.05)。在左右侧曲实验中,载荷范围内3组椎体的活动度随载荷的增加而增加,在最大载荷下3组间差异无统计学意义(P0.05)。在轴向旋转实验中,扭矩范围内3组旋转角度随扭矩的增加而增加,在最大扭矩下分析各组旋转角度,3组间差异无统计学意义(P0.05)。结论轴向联合后方双侧斜向螺钉内固定能够达到与椎弓根钉棒系统接近的生物力学稳定性。后方双侧斜向螺钉在左右侧曲及轴向旋转方面具有相对稳定的生物力学特性,联合应用轴向螺钉可使L5/S1获得更强的稳定性。  相似文献   

15.
目的探讨寰枢椎椎弓根螺钉内固定手术治疗儿童寰枢椎脱位的颈椎活动功能康复和临床疗效。方法2005年9月-2013年3月对21例儿童寰枢椎脱位患者采用寰枢椎椎弓根螺钉内固定术治疗,男12例,女9例;年龄5-14岁,平均8.9岁。术前颈椎活动度(range of motion,ROM)为前屈26.32°±5.43°、后伸49.58°±4.38°、左旋42.68°±4.46°、右旋41.55°±5.33°、左侧屈28.31°±5.47°、右侧屈27.82°±5.85°。术中采用"寰椎椎弓根显露置钉法"置钉。随访患者神经功能改善和颈椎活动功能情况。结果 21例均行双侧寰枢椎椎弓根螺钉内固定并置钉成功。随访12-92个月,平均32.5个月,术后3-6个月寰枢椎均骨性融合。末次随访颈椎ROM前屈48.12°±4.92°、后伸57.91°±5.15°、左旋58.37°±5.36°、右旋57.51°±5.74°、左侧屈36.57°±4.39°、右侧屈37.44°±4.53°。结论椎弓根螺钉内固定技术治疗儿童寰枢椎脱位,能提供可靠的寰枢椎短节段固定融合和稳定性重建,是一种使颈椎活动功能得到有效康复的治疗方法。  相似文献   

16.
Twelve fresh-frozen cadaveric occipitocervical specimens were randomized based on dual energy xray absorptiometry analysis of bone mineral density. The specimens were subjected to physiologic loads in a device that applied pure unconstrained flexion and extension, lateral bending, and axial rotational moments. The spines were tested intact and after major injury simulating transoral decompression of the dens. Biomechanical testing using pure moments with physiologic loads (< 1.5 N-m) was used to compare stability of posterior occipitocervical plates and screws, loop and cable construct, and new cervical rod and screw system. The injury created significantly less stiffness and greater range of motion and neutral zone at C1-C2 in flexion and extension and lateral bending and greater range of motion and neutral zone in axial rotation than the intact state. In lateral bending, the new rod construct had significantly lower mean values for range of motion than the loop and the plate construct. In axial rotation, the rod construct had a significantly higher mean value for stiffness than the other two devices and a significantly lower mean value for range of motion than the loop. The new rod-based instrumentation system for occipitocervical fixation is biomechanically equivalent or superior to a plate and screw construct and a rod and cable system.  相似文献   

17.
目的测试并评价新型寰枢椎后路动态固定系统的生物力学性能。方法新鲜成人枕颈标本(C0-4)8例,分成4组:完整状态组、寰枢椎不稳状态组、寰枢椎后路动态固定状态组和寰枢椎后路椎弓根螺钉固定状态组。通过加载1.50 N·m的力矩,对4组标本C1/C2、C2/C3节段的前屈/后伸,左/右侧弯和左/右旋转等6种运动方式下的运动范围(range of movement,ROM)及稳定性指数(stability index,SI)进行测试。结果采用新型寰枢椎后路动态固定系统后,C1/C2、C2/C3节段的ROM与正常完整标本相比较,差异无统计学意义(P〉0.05);而采用常规椎弓根螺钉固定与动态固定法相比,C1/C2、C2/C3节段的ROM差异有统计学意义(P〈0.001)。采用寰枢椎后路动态固定系统固定与采用后路椎弓根螺钉固定,C1/C2SI均上升,与完整状态组相比差异均有统计学意义,分别为(P〈0.05)和(P〈0.001)。C2/C3测试结果显示,采用动态固定时SI分别上升为109%、107%和112%;而采用椎弓根螺钉固定,三维运动范围SI反而分别下降为77%、71%和87%,比动态固定SI分别低29%、34%和22%,差异具有统计学意义(P〈0.001)。结论新型寰枢椎后路动态固定系统既可维持寰枢椎的部分旋转功能,又可达到坚固固定的稳定性,同时能够有效地减少对邻近节段的影响,具有良好的研究前景。  相似文献   

18.
OBJECT: The stability provided by 3 occipitoatlantal fixation techniques (occiput [Oc]-C1 transarticular screws, occipital keel screws rigidly interconnected with C-1 lateral mass screws, and suboccipital/sublaminar wired contoured rod) were compared. METHODS: Seven human cadaveric specimens received transarticular screws and 7 received occipital keel-C1 lateral mass screws. All specimens later underwent contoured rod fixation. All conditions were studied with and without placement of a structural graft wired between the skull base and C-1 lamina. Specimens were loaded quasistatically using pure moments to induce flexion, extension, lateral bending, and axial rotation while recording segmental motion optoelectronically. Flexibility was measured immediately postoperatively and after 10,000 cycles of fatigue. RESULTS: Application of Oc-C1 transarticular screws, with a wired graft, reduced the mean range of motion (ROM) to 3% of normal. Occipital keel-C1 lateral mass screws (also with graft) offered less stability than transarticular screws during extension and lateral bending (p < 0.02), reducing ROM to 17% of normal. The wired contoured rod reduced motion to 31% of normal, providing significantly less stability than either screw fixation technique. Fatigue increased motion in constructs fitted with transarticular screws, keel screws/lateral mass screw constructs, and contoured wired rods, by means of 19, 5, and 26%, respectively. In all constructs, adding a structural graft significantly improved stability, but the extent depended on the loading direction. CONCLUSIONS: Assuming the presence of mild C1-2 instability, Oc-C1 transarticular screws and occipital keel-C1 lateral mass screws are approximately equivalent in performance for occipitoatlantal stabilization in promoting fusion. A posteriorly wired contoured rod is less likely to provide a good fusion environment because of less stabilizing potential and a greater likelihood of loosening with fatigue.  相似文献   

19.
目的分析枢椎棘突螺钉单侧应用联合对侧椎弓根螺钉固定在寰枢和枕颈固定中的生物力学稳定性。方法构建正常枢椎解剖、椎板薄和椎动脉变异椎弓根细小3种不同解剖状态下的完整上部颈椎有限元模型作为完整模型组,然后分别模拟齿状突骨折进行寰枢固定和寰椎骨折进行枕颈固定。在寰枢固定中,比较单侧枢椎棘突螺钉+对侧椎弓根螺钉+双侧寰椎侧块螺钉固定组(棘突螺钉组)和枢椎双侧椎弓根螺钉+双侧寰椎侧块螺钉固定组(椎弓根螺钉组);在枕颈固定中,比较单侧枢椎棘突螺钉+对侧椎弓根螺钉+枕骨螺钉固定组(棘突螺钉组)和枢椎双侧椎弓根螺钉+枕骨螺钉固定组(椎弓根螺钉组)。枢椎棘突螺钉分别测试水平、斜向、垂直置钉3种不同的固定技术。模拟颈椎运动,测量枕颈的屈伸、侧屈、旋转的关节活动范围(ROM)。结果在寰枢和枕颈固定中,棘突螺钉组和椎弓根螺钉组的C1~C2屈伸、侧屈、旋转ROM均较完整模型组均明显下降。在寰枢固定中棘突螺钉组C0~C2屈伸、侧屈、旋转的ROM大于椎弓根螺钉组;在枕颈固定中,棘突螺钉组C1~C2侧屈的ROM大于椎弓根螺钉组,棘突螺钉组的C0~C2旋转的ROM大于椎弓根螺钉组。枢椎棘突螺钉分别测试水平、斜向、垂直固定间有差异,但不明显。结论在寰枢和枕颈固定中,枢椎双侧椎弓根螺钉固定和枢椎单侧棘突螺钉联合对侧椎弓根螺钉组合式固定方法均具有良好的稳定性。在寰枢固定中,相对于枢椎棘突螺钉组合式固定,枢椎双侧椎弓根螺钉固定具有更好的寰枢稳定性。在枕颈固定中,枢椎双侧椎弓根螺钉固定在侧屈和旋转活动上较枢椎棘突螺钉组合式固定稳定性更好。枢椎三种棘突螺钉置钉技术间的稳定性差异并不明显。  相似文献   

20.
枕颈部后路不同内固定的生物力学比较   总被引:1,自引:0,他引:1  
目的评价不同内固定重建枕颈部稳定性的生物力学性能。方法12具新鲜人体枕颈部标本,在标本完整、枕寰枢不稳、枕颈部植骨块钛缆固定(A组)、枕颈部经关节螺钉内固定(B组)、SUM-MIT枕颈部内固定系统固定(C组)五种状态下,依次用脊柱三维运动测量系统测试其OcC1、C1,2节段的运动参数。同时对固定后的OcC1经关节螺钉(OcC1TA组)、C1,2经关节螺钉(C1,2TA组)、枢椎椎弓螺钉(C2IS组)和枕骨螺钉(Oc Screw组)在生理载荷下三维六自由度运动时,运用电测法测定四种螺钉的拔出应力,并行统计学分析。结果在OcC1节段,B组在屈伸运动中的运动范围和中性区显著大于C组。在侧屈和旋转运动中,A组的运动范围和中性区均明显大于B、C组。在C1,2节段,B组各方向运动的运动范围和中性区均明显小于A组。B组在旋转运动中的运动范围和中性区均显著小于C组。电测法结果显示,侧屈状态下所有螺钉局部应变均接近0;前屈和旋转时螺钉承受不同程度的拉应力,后伸时螺钉承受压应力。Oc Screw组在屈伸和旋转运动状态下,所承受的任何载荷应力均大于其他三种置钉方法。结论枕颈部后路经关节螺钉内固定和SUMMIT枕颈内固定在控制旋转和侧屈的稳定性上有优点。枕骨螺钉承受的拉应力最大,生理环境下枕骨螺钉可能更易发生松动和断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号