首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A typical 3-ton vapor compression refrigeration system using R-22 as the refrigerant is addressed. Two models are developed: a design model and a hierarchical control model. The design model is operated to observe the response of a typical system under various off-design operating conditions. In lieu of laboratory experiments, the normalized responses from the design model (normalized with respect to the design conditions) are compared to the normalized values based on the experimental data reported in the literature. This is done to validate the design model to the extent possible, limited by the reported experimental data in the literature. From this design model a hierarchical control model is developed, in which different control techniques for system capacity regulation and for operation over a range of ambient temperature are employed. By varying corresponding control parameters in each technique, information is developed regarding the refrigerant conditions within the system and system performance under different operating conditions. From the results of these simulations, hierarchical or switchover control strategy for an integrated refrigeration system is postulated to achieve the specific operational requirements with the highest feasible system efficiency over a wide range of off-design operating conditions. A similar approach can be used to postulate different hierarchical control based on other performance measures and considerations.  相似文献   

2.
Viorel Badescu   《Renewable Energy》2007,32(5):845-855
This paper develops previous research on passive house (PH) space heating. A simple and accurate ground heat exchanger model is developed. It is based on a numerical transient bi-dimensional approach that allows to computing the ground temperature at the surface and at various depths. The new model was integrated into the existing theoretical approach and implemented within the computer code used to simulate the heating system operation in Pirmasens PH (Rhineland Palatinate, Germany). The heating and cooling potential of the system under real climatic conditions was investigated. The energy delivered by the ground heat exchanger depends significantly on different design parameters like pipe's depth, diameter and material.  相似文献   

3.
This study presents an energetic performance analysis for a combined power generation system consisting of a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC). In order to simulate the SOFC–ORC combined system under steady‐state conditions, a mathematical model is developed. The developed model is used to determine the potential effects caused by the changes of the design parameters on the energetic performance of the combined system. As design parameters, turbine inlet pressure, condenser temperature, fuel utilization, current density, compressor pressure ratio, and cell operating temperature are taken into account. In this regard, the electrical power and First Law efficiency are estimated by parametrical analysis and discussed comprehensively. Results of these analyses show that the efficiency is increased about 14–25% by recovering SOFC waste heat through ORC based on investigated design parameter conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The objective of this study is to evaluate the magnitude of reduction in cooling and reheat energy when a heat pipe system is incorporated with the cooling coil of an air‐conditioning system. The heat pipe/cooling coil (HP/CC) system performance is determined by several parameters that are related to both the air‐conditioner cooling coil and the heat pipe physical characteristics as well as the condition of the air entering and leaving the system. In order to appreciate the impact of these parameters and their relative influence on energy consumption and the required indoor air conditions, a simple mathematical model incorporating the parameters of HP/CC is formulated. The model describes the overall system performance at varying entering and leaving air conditions. The model is then applied to a case study as an example of an application to investigate these relationships for a better understanding of the system behaviour and the influencing design parameters. It is evident that due to the coupling nature of the heat pipe and the cooling coil actions, a unique system performance will be obtained for each combination of heat pipe effectiveness and cooling coil by‐pass factor. A proper selection of both the heat pipe and the cooling coil characteristics is found to be necessary for a satisfactory performance under the given operating conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Large scale thermal energy storage for solar heating applications can be accomplished in the ground through the installation of an array of vertical heat exchange boreholes or U-tubes. Simulation modeling of the storage subsystem and its integration with the total system is essential for design and performance evaluation. Although U-tube storage design is especially attractive in clay soils and preferable to boreholes in many geological conditions, only a borehole simulation model is currently available, validated, and integrated into a system simulation model. This article presents a comparative analysis of the heat transfer from boreholes and U-tubes using analytical solutions, finite element modeling, and the available simulation model. The analysis is used to support the development of a methodology by which the heat transfer of any U-tube configuration can be modeled by appropriately specifying parameters in the borehole storage simulation model. The borehole model can then be used to model the storage subsystem integrated within a total system simulation model.  相似文献   

6.
Due to the requirement of the battery for the thermal management system, based on the coupling relationship between the velocity field and the thermal flow field of the field synergy principle, the flow paths of the forced air cooling system for different battery packs were analyzed. First, the thermodynamic parameters of the battery were collected through experiments and verified by simulation. Secondly, based on the collected thermodynamic parameters of the battery, the heat generation model of the battery, the heat conduction model of the gas, and the coupled heat dissipation model of the battery and air were established. Determine the boundary conditions, calculation methods and evaluation indicators required for simulation; Finally, based on four different driving conditions, the forced air cooling performance of the double “U” shape duct and double “1” type duct is simulated. Through the analysis of the results, the dual “U” air ducts have a more heat dissipation effect on the battery pack than the double “1” shape duct. The results conform to the definition of the field synergy principle for the coupling relationship between the velocity field and the heat flow field. Then research provide references for the design of battery packs and matching of cooling systems.  相似文献   

7.
A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell–heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell–heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.  相似文献   

8.
ABSTRACT

Due to increasing world energy demand and environmental concerns, sustainable energy production has become crucial. Among sustainable energy sources such as solar, wind, and geothermal, industrial waste heat (heat normally released to the environment) has a big potential. Organic Rankine cycles (ORCs) are promising systems for utilizing low-temperature (100–250°C) waste heat. For an ORC system, the condenser is a key component. An accurate condenser design is important for cycle efficiency and system cost. In the literature, there are in-tube condensation correlations that are used to design condensers. However, they are not necessarily valid for low-temperature ORC conditions and working fluids, and that might lead to inaccurate end designs. This study comprises a summarized literature survey about in-tube condensation correlations. Then an iterative heat exchanger design methodology is proposed that allows performing a design sensitivity analysis on a V-shaped condenser within an input range of geometric parameters and boundary conditions. Nineteen correlations are implemented to calculate rating parameters like pressure drops, total transferred heat, overall heat transfer coefficient, size, cost and degree of subcooling. The deviations at these parameters are represented as the coefficient of variation that indicates the design condition regions where the prediction methods differ or not.  相似文献   

9.
以太阳能为驱动热源,基于喷射式制冷和ORC,构建一种太阳能喷射式制冷功冷联供系统,该系统分为太阳能集热子系统和功冷联供子系统两部分。以R161为功冷联供子系统循环工质,通过Matlab建立该系统热力学模型,对其性能进行模拟,在设计工况下该系统制冷量为2.893 kW,净输出功为1.594 kW,功冷联供子系统制冷效率为12.47%,发电效率为6.87%,效率为41.45%。通过分析可知,该系统损占比较大的部件依次为太阳能集热器(73.3%)、发生器(12.14%)、蒸发器(5.03%)和透平(4.81%)。考虑到实际过程,分别研究系统内部参数改变和外部环境参数改变,对系统的影响,发现高低压发生器的温升由利于系统性能的提升,同时环境温度的升高以及太阳辐照度的提升均可改善集热器效率,从而提升系统性能。  相似文献   

10.
This paper describes a solar heat pipe thermoelectric generator (SHP-TEG) unit comprising an evacuated double-skin glass tube, a finned heat pipe and a TEG module. The system takes the advantage of heat pipe to convert the absorbed solar irradiation to a high heat flux to meet the TEG operating requirement. An analytical model of the SHP-TEG unit is presented for the condition of constant solar irradiation, which may lead to different performance characteristics and optimal design parameters compared with the condition of constant temperature difference usually dealt with in other studies. The analytical model presents the complex influence of basic parameters such as solar irradiation, cooling water temperature, thermoelement length and cross-section area and number of thermoelements, etc. on the maximum power output and conversion efficiency of the SHP-TEG. Simulation based on the analytical model has been carried out to study the performance and design optimization of the SHP-TEG.  相似文献   

11.
利用流体力学计算软件CFX,采用结构化网格,研究系统参数如系统压力、热流密度以及质量流率对超临界水冷堆堆芯子通道内熵产行为的影响。湍流模型选择SSG雷诺应力模型,近壁面采用加强壁面处理方法。研究结果表明:系统压力对子通道熵产的影响有限,而热流密度和质量流率的影响则更为显著。随着热流密度的升高,传热对熵产的贡献增大,子通道内主流熵产增加;随着质量流率的升高,流体摩擦阻力对熵产的贡献增大,子通道内主流熵产减少。为了从热力学角度综合评估系统参数对主流熵产行为的影响,引入无量纲熵产数,进一步获得合理的热流密度和质量流率的系统参数设计方案,为超临界水冷反应堆的概念设计提供一定的理论指导。  相似文献   

12.
This paper is concerned with the design, modelling and parametric analysis of a gas-to-thermal fluid heat recovery system from engine exhausts in a trawler chiller fishing vessel to power an NH3-H2O absorption refrigeration plant for onboard cooling production. Synthetic oil was used as heat transfer fluid and recirculated. The major components of the system are fluid-to-solution and gas-to-fluid heat exchangers. Both heat exchangers and the complete system have been modelled. Models are implemented in several computer programs. These models have been used to study the influence of geometric design parameters and thermal operating conditions on heat exchangers and system thermal performance. The analysis of the results allowed us to find the optimum thermal operating conditions that minimise total heat transfer area. Optimal design based on real data was performed and the operating function of exhaust gases by-pass control was obtained and is presented.  相似文献   

13.
Ahmet Dagdas   《Renewable Energy》2007,32(6):1020-1032
One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered.  相似文献   

14.
A compartment model was developed to describe the flow pattern of gas within the dense zone of a tapered membrane-assisted fluidized-bed reactor (TMAFBR), in the bubbling mode of operation for steam reforming of methane under wall heat flux. The parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined using the experimental data reported elsewhere [Adris AM, Lim CJ, Grace JR. The fluidized bed membrane reactor system: a pilot scale experimental study. Chem Eng Sci 1994; 49:5833-43.] and good agreements were obtained between model predictions and corresponding experimental data. The developed model was then utilized to predict the behavior of TMAFBR under various operating and design conditions. Moreover, the influences of tapered angle, bed operating temperature and pressure, and feed temperature on the methane conversion and the total yield of hydrogen were carefully investigated. Furthermore, the performance capability of the TMAFBR was compared with that of a columnar one under identical operating conditions.  相似文献   

15.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a detailed analysis of an ammonia–water vertical tubular absorber cooled by air. The absorption process takes place co-currently upward inside the tubes. The tubes are externally finned with continuous plate fins and the tube rows are arranged staggered in the direction of the air flow. The air is forced over the tube bank and circulates between the plain fins in cross flow with the ammonia–water mixture. The analysis has been carried out by means of a mathematical model developed on the basis of mass and energy balances and heat and mass transfer equations. The model takes into account separately the churn, slug and bubbly flow patterns experimentally forecasted in this type of absorption processes inside vertical tubes and considers the simultaneous heat and mass transfer processes in both liquid and vapour phases, as well as heat transfer to the cooling air. The model has been implemented in a computer program. Results based on a representative design and nominal operating conditions of an absorber for a small capacity ammonia–water absorption refrigeration system are shown. A parametric analysis was realised to investigate the influence of the design parameters and operating conditions on the absorber performance. The noteworthy results that have effect on practical design of the absorber are presented and commented.  相似文献   

17.
A mathematical model of the closed adsorption heat pump and cooling systems is particularly used to assist in interpreting the observed phenomena, to design the system, to predict the trends, and to assist in optimization. In this paper, various mathematical models mainly analyzing the heat and mass transfer process of an adsorption bed in closed adsorption heat pump and cooling systems are reviewed and classified based on complexity, into three main groups: i.e. thermodynamic model; lumped parameters model; heat and mass transfer model. The major characteristics of different models and assumptions used are presented and discussed. Also, the numerical methods and validation of the models are summarized and significant results obtained through mathematical model are detailed. Although the models have evolved to a point where several features of the process can be predicted, more effort is required before the models can be applied to define actual operating conditions as well as to further investigate new closed adsorption cycles.  相似文献   

18.
This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m−2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.  相似文献   

19.
In this study, we first consider developing a thermodynamic model of solid oxide fuel cell/gas turbine combined heat and power (SOFC/GT CHP) system under steady-state operation using zero-dimensional approach. Additionally, energetic performance results of the developed model are compared with the literature concerning SOFC/GT hybrid systems for its reliability. Moreover, exergy analysis is carried out based on the developed model to obtain a more efficient system by the determination of irreversibilities. For exergetic performance evaluation, exergy efficiency, exergy output and exergy loss rate of the system are considered as classical criteria. Alternatively, exergetic performance coefficient (EPC) as a new criterion is investigated with regard to main design parameters such as fuel utilization, current density, recuperator effectiveness, compressor pressure ratio and pinch point temperature, aiming at achieving higher exergy output with lower exergy loss in the system. The simulation results of the SOFC/GT CHP system investigated, working at maximum EPC conditions, show that a design based on EPC criterion has considerable advantage in terms of entropy-generation rate.  相似文献   

20.
This paper explores the use of Jaya algorithm for the single- and multi-objective design optimization of plate-fin heat exchangers (PFHEs). Design of PFHEs involves a number of geometric and physical parameters with high complexity. The general design approaches are based on trial and error and become tedious and time consuming and do not guarantee the achievement of an optimal design. Therefore, advanced optimization algorithms are preferred. The Jaya algorithm is a newly developed simple algorithm and it does not have any algorithmic-specific parameters to be tuned and this aspect reduces the designer's effort in tuning the parameters to arrive at the optimum value of the objective function. The Jaya algorithm is proposed for the design optimization of PFHEs by minimizing the total surface area of heat transfer, total annual cost, and total pressure drop of the system and maximizing the effectiveness. Seven design parameters are considered which are imposed by constraints on the design. Single- as well as multi-objective design optimization is carried out using the proposed algorithm. The results obtained by Jaya algorithm are compared with the results of latest reported algorithms. These comparisons revealed that the Jaya algorithm can be successfully applied for the design optimization of PFHEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号