首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The stress corrosion cracking (SCC) behavior of Q345R steel in hydrofluoric acid (HF) vapor environment was investigated. It is shown that Q345R has a high susceptibility to SCC in HF vapor environment, which is negatively correlated with the strain rate. Several different crack morphologies and cracking factors are verified: flat cracks in ferrite are associated with anodic dissolution triggered by micro-galvanic corrosion, and porous cracks at the pearlite and pearlite-ferrite interfaces are mainly influenced by hydrogen. The results of hydrogen charging tests show that pre-charging has little effect on the hydrogen embrittlement of Q345R steel, while in-situ charging leads to severe brittle fracture of the material, because hydrogen interacts with large number of moving dislocations generated by in-situ stretching process and penetrates more readily into the material. The synergistic relationship between hydrogen and dislocation motion is found to be the main mechanism for the transition from ductile to brittle fracture.  相似文献   

2.
Effects of friction stir processing on hydrogen storage of ZK60 alloy   总被引:1,自引:0,他引:1  
In this paper we report the use of a novel processing route to produce samples for use as a hydrogen carrier. ZK60 alloy was produced by induction melting and sheets taken from the melt ingot were submitted to Friction Stir Processing (FSP) and subsequent manual filing with a rasp under ambient conditions. Samples from the Base Metal As-Cast (AC) and Stir Zone (SZ) were microstructurally investigated before and after filing including the alloy in as-cast state. The results showed that before filing SZ and AC samples presented equiaxial grains with the SZ sample having a much finer microstructure compared to AC. The values of grain sizes are around 150 μm and 1–2 μm for the AC and SZ samples, respectively. After filing, both samples presented similar grain sizes of only 60 nm. Although they attained similar grain sizes, the filings from SZ were more homogeneous and presented thinner innerlayers compared to its AC counterpart. The filings taken out from the SZ presented much faster kinetics for hydrogen absorption mainly due to its thinner innerlayers and its finer second-phase particle distribution, reaching up to 4.5 wt% of hydrogen uptake against only 1.0 wt% for AC sample after 10 h of absorption in the first cycle. Both samples presented similar behavior for full discharge time. These results show the possibility of using FSP with subsequent filing as a mean to obtain materials with suitable properties for use as energy carriers with enhanced kinetics and better oxidation resistance in shorter processing times.  相似文献   

3.
Under the tensile loading, the damage of metals in the corrosive medium is the most destructive and harmful. In this study, the stress corrosion cracking behavior of H-charged high-strength steel in 3.5 wt% NaCl solution after electropulsing treatment was investigated. The experimental results from elongation, yield strength, fracture morphology, and polarization curves all demonstrate the positive effect of the pulsed processing, as it reduced the susceptibility of steel to stress corrosion cracking by removing hydrogen by electropulsing. The reduction in hydrogen content of the pulsed high–strength steels was attributed to electromigration and increased system free energy, which drove the hydrogen atoms in the steel to de–trap and reduced the susceptibility to stress corrosion cracking.  相似文献   

4.
Magnesium-based wastes were reprocessed by mechanical milling under air atmosphere and used to produce hydrogen by hydrolysis on a laboratory scale. The evolution of the material during reprocessing and the generation of hydrogen in a 0.6 M MgCl2 aqueous solution at 24 °C are reported. The morphology, microstructure and phase abundance change with milling time. During mechanical processing, (i) particle size and crystallite size reduce, (ii) microstrain accumulates in the material, (iii) Al dissolves in Mg, (iv) the amount of Mg17Al12 (β-phase) increases and (v) small quantities of Fe from the milling tools are incorporated in the material. By hydrolysis, hydrogen yields in the 70–90% range after 30 min of reaction have been obtained, depending on milling time. Reactants are not exhausted during the hydrolysis reaction in the saline solution, due to the formation of a Mg(OH)2 layer that produces a passivating effect. Higher generation has been observed for larger particles and for materials reprocessed for longer milling times. Reaction kinetics also improves with milling time, with faster rates observed for the smaller particles. The shape of the hydrolysis curves can be fitted with a model that corresponds to a reaction limited by a three dimensional geometric contraction process. Mg17Al12 and Fe favor hydrogen production by acting as micro-galvanic cathodes during the reaction.  相似文献   

5.
The effects of neutron radiation on nickel-based alloys in thermal reactors are defying predictions that were made based upon accelerated testing in fast reactors. As nickel-based alloy components face significant doses in aging thermal reactors and their role in Gen-IV reactor designs becomes prominent, the literature on the effects of radiation on such alloys must be reviewed to enable better structural integrity assessments for relevant components and optimise alloys with respect to irradiation embrittlement resistance. This paper reviews the available data on the effects of radiation, notably neutron radiation, on nickel-based alloys and discusses the possible mitigation strategies and design opportunities for radiation embrittlement-resistant alloys based on recent developments in alloy computational design.

This review was submitted as part of the 2016 Materials Literature Review Prize of the Institute of Materials, Minerals and Mining run by the Editorial Board of MST. Sponsorship of the prize by TWI Ltd is gratefully acknowledged.  相似文献   


6.
Magnesium hydride MgH2 is an attractive hydrogen storage candidate due to its high reversible hydrogen mass capacity of 7.6 wt%, abundant resources of Mg and low cost. Unfortunately, its stubborn thermodynamic stability results in a high temperature of 573 K for hydrogen desorption, which is still far from the target for practical applications. In this article, we highlight the recent advances in stress/strain effects on the de/rehydrogenation thermodynamics of MgH2, which sheds a new light on tuning the thermodynamic properties of magnesium and other metal hydrides for hydrogen storage.  相似文献   

7.
We prepared an ordered Mg3Cd alloy by high energy ball milling of elemental powders. The synthesized alloy exhibited good hydrogenation kinetics and reversibly absorbed about 2.8 wt. % of hydrogen. The temperature dependence of hydrogenation kinetics of the alloy measured in the range of temperatures covering the order-disorder phase transformations in the Mg3Cd and MgCd phases did not exhibit any anomalies and could be fitted with a single Arrhenius line. The measured apparent activation energy (69 ± 2 kJ/mol) hinted that hydrogenation process was controlled by diffusion of Cd in metallic phase. The pressure-composition isotherms exhibited negligible pressure hysteresis and sloping pressure plateau. Based on microstructural evidence obtained with the aid of X-ray diffraction and scanning electron microscopy, we built a thermodynamic model predicting the plateau hydrogen pressure for partially hydrogenated alloy. The predictions of the model were in a good agreement with the experimental data. Finally, we discussed the origins and the growth mechanisms of Cd whiskers observed in the alloys after full hydrogenation cycle.  相似文献   

8.
Sulfide stress corrosion cracking (SSCC) behavior of the fusion boundary (FB) region of Inconel 625/X80 weld overlay was investigated with a focus on the role of the beach and peninsula partially mixed zones (PMZs). Compared to the martensite-ferrite boundary, the large misorientation and low deformation compatibility of the austenite-martensite boundary promote the accumulation of hydrogen and thus increase the cracking susceptibility. Further, under the effect of local anodic dissolution and hydrogen accumulation due to the large dimension PMZ, the corrosion defect formed at the junction can be easily transformed into a crack. After SSCC initiation, the crack preferentially grows along the Inconel 625/PMZ interface while the austenite matrix may oblige the crack to propagate along the FB. In addition, the beach PMZ likely shows a higher SSCC susceptibility than the peninsula PMZ mainly because severe anodic dissolution in the peninsula structure blunts the crack tip along the FB during crack propagation.  相似文献   

9.
Stress corrosion cracking (SCC) tests on welded specimens of sensitized type 304SS with a thickness of 20 mm were performed in sodium thiosulphate solution at room temperature, with continuous monitoring of the SCC growth, using the techniques of modified induced current potential drop (MICPD), alternating current potential drop (ACPD) and direct current potential drop (DCPD). The MICPD and DCPD techniques permit continuous monitoring of the back wall SCC, which initiates from a fatigue pre-crack at a depth of about 4 mm, from which it propagates through more than 80% of the specimen thickness. The MICPD technique can decrease the effect of the current flowing in the direction of the crack length by focusing the induced current into the local area of measurement using induction coils, so that the sensitivity of the continuous monitoring of the back wall SCC is higher than that of the ACPD and DCPD techniques.  相似文献   

10.
This investigation was conducted to evaluate the effect of cold rolling on the structure and hydrogen properties of two magnesium alloys, AZ91 and AM60D, after processing by equal-channel angular pressing (ECAP). The results show that the use of cold rolling after ECAP significantly increases the preferential texture for hydrogenation and increases the potential for the use of these alloys as hydrogen storage materials. The ECAP was performed through two different numbers of passes in order to give different grain sizes and both materials were subsequently cold-rolled through the same numbers of passes for a comparison of the hydrogenation absorption. It is shown that the hydriding properties are enhanced by an (0001) texture which improves the kinetics primarily in the initial stages of hydrogenation. The results demonstrate that optimum sorption properties may be acquired through a combination of fine grains and appropriate texture.  相似文献   

11.
Stress corrosion cracking (SCC) is an important degradation mechanism to be considered for safety assessment of nuclear piping components made of austenitic steels, especially in the heat-affected zones. Damage due to SCC occurs in a susceptible material, in a corrosive environment, in the presence of high temperature and high applied/residual stresses. The operating conditions and the environmental conditions show variations during the lifetime of the power plant. Also, there will be variations in micro-structural properties of the material of piping components. These variations should be taken into account while assessing the safety of the piping component against SCC. This can be accomplished by treating the relevant variables as random or fuzzy depending upon the source and type of uncertainty. In this paper, an attempt has been made to compute the fuzzy failure probabilities of a piping component against SCC with time, using an approach combining the vertex method with the Monte Carlo simulation technique. The initiation and propagation stages of stress corrosion cracks are modelled using a modified PRAISE approach. The degree of sensitisation, material fracture toughness, yield strength, ultimate strength and applied stress are considered as random variables, while operating temperature and oxygen concentration are considered as fuzzy variables. The R6 procedure is used in the computation of the fuzzy failure probabilities. The usefulness of the approach is demonstrated through an example problem.  相似文献   

12.
The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H2SO4 solution at 25 °C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance.  相似文献   

13.
Electrochemical hydrogen permeation tests were performed to measure the hydrogen permeation current through the X-65 pipeline steel in the electrolytes simulating the soil conditions to initiate near-neutral pH stress corrosion cracking (SCC) in pipelines. The hydrogen permeation current was analyzed following the constant concentration model. It is shown that, AQDS, simulating the organic compound in the soil, inhibits hydrogen permeation by decreasing the sub-surface hydrogen concentration, while sulfide promotes hydrogen permeation by inhibiting the hydrogen recombination and thus increasing the sub-surface hydrogen concentration. The steel specimen is more susceptible to stress corrosion cracking in the soil solution with a higher sub-surface hydrogen concentration, indicating that hydrogen is involved in near-neutral pH SCC in pipelines. It is suggested that hydrogen promotes the cracking of the steel, accompanying with the anodic dissolution on the crack sides and at the crack tip.  相似文献   

14.
The effects of internal hydrogen and environmental hydrogen on the hydrogen embrittlement of 304 austenitic stainless steels (ASSs) with varying degrees of pre-strain were investigated by a tensile test under cathodic hydrogen-charged, gaseous hydrogen and hydrogen-charged and gaseous hydrogen combined conditions. The internal hydrogen embrittlement of the 304 ASSs increased with increasing pre-strain, while the hydrogen embrittlement caused by the environment hydrogen increased and then decreased with increasing pre-strain. The hydrogen embrittlement mechanisms caused by the internal hydrogen or environmental hydrogen were different. The cracks caused by internal hydrogen or environmental hydrogen are mainly initiated in grain interior or at grain boundary, respectively. Under the coupling condition of internal hydrogen and environmental hydrogen, the hydrogen embrittlement of 304 ASSs was the strongest and increased with increasing pre-strain. Environmental hydrogen was dominant for low levels of pre-deformed specimens. Internal hydrogen was dominant for high levels of pre-deformed specimen.  相似文献   

15.
An effective ex-situ method for characterizing electrochemical durability of a gas diffusion layer (GDL) under simulated polymer electrolyte membrane fuel cell (PEMFC) conditions is reported in this article. Electrochemical oxidation of the GDLs are studied following potentiostatic treatments up to 96 h holding at potentials from 1.0 to 1.4 V (vs.SCE) in 0.5 mol L−1 H2SO4. From the analysis of morphology, resistance, gas permeability and contact angle, the characteristics of the fresh GDL and the oxidized GDLs are compared. It is found that the maximum power densities of the fuel cells with the oxidized GDLs hold at 1.2 and 1.4 V (vs.SCE) for 96 h decreased 178 and 486 mW cm−2, respectively. The electrochemical impedance spectra measured at 1500 mA cm−2 are also presented and they reveal that the ohmic resistance, charge-transfer and mass-transfer resistances of the fuel cell changed significantly due to corrosion at high potential.  相似文献   

16.
The influence of ultrasonic shot peening (USSP) treatment on the microstructure, corrosion behavior and hydrogen evolution of AZ31 magnesium alloy is investigated. An Fe-rich composite in amorphous state is introduced on the surface layer. Microstructure results indicate that nanoscale grains are formed on the surface layer after USSP treatment. Comparing to the untreated AZ31, the charge transfer resistance of the USSP-treated sample decreases by ~410 times and the hydrogen evolution rate increases by ~64 times. The acceleration of corrosion rate is attributed to the micro-galvanic interaction between the nanocrystalline Mg matrix and amorphous Fe-rich composite.  相似文献   

17.
Hydrogen embrittlement (HE) behavior was investigated in a low carbon medium Mn steel with three different volume fraction of retained austenite (RA), which was obtained after different heat treatments. The hydrogen permeation test showed a higher permeability for directly water quenched specimen compared to quench-tempered specimens. Melt extraction test showed hydrogen concentration increased with hydrogen charging current density in the order of directly quenched specimen, QLA, quenched with low-temperature annealed specimens and QHA quenched with high-temperature annealed specimens. Slow strain-rate tensile test was employed to examine the HE behavior, the HE indices decreased with the increase of RA irrespective of increased hydrogen concentration. HE susceptibility can be suppressed by raising intercritical annealing temperature because Mn enrichment increases the stability of RA.  相似文献   

18.
The effects of gas diffusion layer’s (GDL’s) anisotropic bending stiffness on the degradation behavior of polymer electrolyte membrane fuel cells have been investigated under freezing conditions. We have prepared GDL sheet samples such that the higher stiffness direction of GDL roll is aligned with the major flow field direction of a metallic bipolar plate at angles of 0° (parallel: ‘0° GDL’) and 90° (perpendicular: ‘90° GDL’). The I-V performances before and after 1000 temperature cycles between −10 and 1 °C of 90° GDL stack are higher than those of 0° GDL stack, and the voltages of 90° GDL stack are decreased slower than those of 0° GDL stack, indicating a higher durability of 90° GDL stack. Furthermore, the values and increasing rates of high-frequency resistance of 90° GDL stack are lower than those of 0° GDL stack. However, the H2 and air pressure differences before and after 1000 temperature cycles of 90° GDL stack are very similar to those of 0° GDL stack. The surface of anode catalyst layer (CL) of membrane-electrode assembly (MEA) with catalyst-coated membrane type in 0° GDL stack appears to be more severely damaged than that in 90° GDL stack, especially under the channels, whereas the surfaces of cathode CLs of MEAs in both 0° and 90° GDL stacks are slightly damaged after 1000 temperature cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号