首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In the present research, magnetically recyclable graphene oxide (GO)/dopamine hydrochloride/AuNPs nanocatalyst are prepared by a green path with Acorus calamus seeds extract as a stabilizing and reducing agent and its catalytic efficiency was used for the reduction of methylene blue (MB) and methyl orange (MO) in the presence of NaBH4 as a reducing agent in the aqueous medium in the ambient conditions. The prepared nanocatalyst was characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and UV–Vis spectroscopy. The prepared nanocatalyst has good catalytic activity and can be regain by an external magnet and recycled several times without considerable loss of its catalytic activity in the process of reduction of organic dyes.  相似文献   

2.
Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe3+/Fe2+ by chemical co-precipitation and subsequently pyrolyzing at 500 °C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe3O4 loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am2 kg−1) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 °C) due to greater Fe3O4 composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g−1 and 3.1 mg g−1, respectively. The data best fitted in pseudo-second-order (R2 > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO43− was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization.  相似文献   

3.
An organic–inorganic nanocomposite was prepared via sol–gel processing from 3-(trimethoxysilyl)propyl methacrylate (MAPTMS) and titanium(IV) isopropoxide (TIP) precursors (TiMEMO) in the form of a viscous resin, and used as a binder for the preparation of coloured thickness insensitive spectrally selective (TISS) paints and corresponding solar absorber coatings. The spectral selectivity of TiMEMO-based TISS paints was optimized by varying the concentrations of binder and different pigments: black, coloured (red, green and blue) and aluminium flakes, the latter imparting low thermal emittance, which was correlated to the presence of titanium in the TiMEMO sol–gel host. The formation and the ensuing structure of the sol–gel TiMEMO hybrid was studied in detail and the nanocomposite structure of the TiMEMO binder formed was assessed from infrared and 29Si NMR measurements, which confirmed the formation of Ti–O–Si linkages established after the hydrolysed precursors condensed into a compliant resinous material. XRD measurements provided additional information about the existence of small coherent domains of silsesquioxane units in the sol–gel host. The abrasion resistance of the non-pigmented TiMEMO binder deposited in thin film form on a PMMA substrate was assessed by the Taber test, and its hardness compared with other resin binders which have been used for making TISS paint coatings. The surface properties of the non-pigmented TiMEMO binder and the ensuing TISS paint coatings were determined from contact angle measurements. The results showed that the water contact angles of non-pigmented TiMEMO binder increased from 70° to 125–135° for the corresponding pigmented TISS paint coatings, inferring the influence of surface roughness on surface energy in the presence of pigments. SEM measurements revealed a striking similarity in the surface morphology of the TISS paint coatings with some other surfaces exhibiting the Lotus effect.  相似文献   

4.
Hydrogen generation from sodium borohydride (NaBH4) hydrolysis in the presence of metal catalysts is a frequently used and encouraging method for hydrogen storage. Metal nanoparticle-supported catalysts are better recyclability and dispersion than unsupported metal catalysts. In this study, the synthesis and characterization of a polymer-supported catalyst for hydrogen generation using NaBH4 have been investigated. For the synthesis of polymeric material, first of all, kaolin (KLN) clay has been magnetically rendered by using the co-precipitation method (Fe3O4@KLN) and then coated with poly tannic acid (PTA@Fe3O4@KLN). Then, the catalyst loaded with cobalt (Co) nanoparticles have been obtained with the NaBH4 reduction method (Co@PTA@Fe3O4@KLN). The surface morphology and structural properties of the prepared catalysts have been determined using methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS) and vibrating sample magnetometer (VSM). The optimization of the most important variables (NaBH4 amount, NaOH amount, catalyst amount, and metal loading rate) affecting the hydrolysis of NaBH4 using the synthesized polymeric catalysts was carried out using response surface methodology (RSM). Depending on the evaluated parameters, the desired response was determined to be hydrogen production rate (HGR, mL/g min). HGR was 1540.4 mL/gcat. min. in the presence of the Co@PTA@Fe3O4@KLN at optimum points obtained via RSM (NaBH4 amount 0.34 M, NaOH amount 7.9 wt%, catalyst amount 3.84 mg/mL, and Co loading rate 6.1%). The reusability performance of the catalyst used in hydrolysis of NaBH4 was investigated under optimum conditions. It was concluded that the catalyst is quite stable.  相似文献   

5.
This paper reports the in-situ generation and catalytic activity of nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrene sulfonic acid-co-maleic acid), PSSA-co-MA, in the hydrolysis of ammonia borane (AB). PSSA-co-MA stabilized nickel(0) (PSMA-Ni) and cobalt(0) nanoclusters (PSMA-Co) having average particle size of 2.1 ± 0.6 and 5.3 ± 1.6 nm, respectively, were generated by in-situ reduction of nickel(II) chloride or cobalt(II) chloride in an aquoues solution of NaBH4/H3NBH3 in the presence of PSSA-co-MA. The in-situ generated nanoclusters were isolated from the reaction solution and characterized by UV-Vis, TEM, XRD and FT-IR techniques. Compared with the previous catalyst systems, PSMA-Ni and PSMA-Co are found to be highly active catalysts for hydrogen generation from the hydrolysis of AB with the turnover frequency values of 10.1 min−1 for Ni and 25.7 min−1 for Co. They are also very stable during the hydrolysis of AB providing 22450 and 17650 turnovers, respectively. The results of mercury poisoning experiments reveal that PSMA-Ni and PSMA-Co are heterogeneous catalysts in the hydrolysis of AB. Herein, we also report the results of a detailed kinetic study on the hydrogen generation from the hydrolysis of AB catalyzed by PSMA-Ni and PSMA-Co depending on catalyst concentration, substrate concentration, and temperature along with the activation parameters of catalytic hydrolysis of AB calculated from the kinetic data.  相似文献   

6.
Char derived from cyanobacterial blooms (CDCB), by-product of fast pyrolysis of cyanobacterial blooms from Dianchi Lake (Yunnan Province, China) at a final pyrolysis temperature of 500 °C were used as feedstock material in this study. Steam gasification characteristics of CDCB were investigated in a fixed-bed reactor to evaluate the effect of particle size (below 0.15 mm, 0.15–0.3 mm, 0.3–0.45 mm, 0.45–0.9 mm, 0.9–3 mm) and solid residence time (3, 6, 9, 12, 15 min) on gas yield and composition, and experiments were carried out at bed temperature range of 600–850 °C, steam flow rate of 0.178 g/min. The results showed that solid residence time played an important role on steam gasification process, while particle size presented less effect on gasification process; proper particle size and longer residence time were favorable for dry gas yield and carbon conversion efficiency (CCE). At the same time, higher reaction temperature reduced influence of particle size on gasification process, and smaller particle size required less residence time for reaction completed. Maximum dry gas yield and CCE reached 1.84 Nm3 kg−1 and 98.82%, respectively, achieved at a temperature of 850 °C, flow rate of 0.178 g/min, solid residence time of 15 min and particle size range of 0.45–0.9 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号